×

Shape sensitivity analysis for elastic structures with generalized impedance boundary conditions of the Wentzell type – application to compliance minimization. (English) Zbl 1428.35573

This paper focuses on generalized impedance boundary conditions (GIBC) with second order derivatives in the context of linear elasticity and general curved interfaces. Some modeling, analysis and computation results are presented.

MSC:

35Q74 PDEs in connection with mechanics of deformable solids
35C20 Asymptotic expansions of solutions to PDEs
49Q10 Optimization of shapes other than minimal surfaces
49Q12 Sensitivity analysis for optimization problems on manifolds
74B05 Classical linear elasticity
74P05 Compliance or weight optimization in solid mechanics
35B40 Asymptotic behavior of solutions to PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence

Software:

FreeFem++
Full Text: DOI

References:

[1] Achdou, Y., Pironneau, O., Valentin, F.: Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comput. Phys. 147(1), 187-218 (1998) · Zbl 0917.76013
[2] Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Pure and Applied Mathematics (Amsterdam), vol. 140. Elsevier, Amsterdam (2003) · Zbl 1098.46001
[3] Allaire, G.: Shape Optimization by the Homogenization Method. Applied Mathematical Sciences, vol. 146. Springer, New York (2002) · Zbl 0990.35001
[4] Allaire, G.: Conception Optimale de Structures. Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 58. Springer, Berlin (2007) · Zbl 1132.49033
[5] Allaire, G., Dapogny, C.: A deterministic approximation method in shape optimization under random uncertainties. SMAI J. Comput. Math. 1, 83-143 (2015) · Zbl 1416.74080
[6] Allaire, G., Bonnetier, E., Francfort, G., Jouve, F.: Shape optimization by the homogenization method. Numer. Math. 76(1), 27-68 (1997) · Zbl 0889.73051
[7] Allaire, G., Jouve, F., Toader, A.-M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), 363-393 (2004) · Zbl 1136.74368
[8] Amstutz, S., Ciligot-Travain, M.: A notion of compliance robustness in topology optimization. ESAIM Control Optim. Calc. Var. 22(1), 64-87 (2016) · Zbl 1335.49069
[9] Antoine, X., Barucq, H.: Approximation by generalized impedance boundary conditions of a transmission problem in acoustic scattering. ESAIM: M2AN 39(5), 1041-1059 (2005) · Zbl 1074.78004
[10] Bendali, A., Lemrabet, K.: The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation. SIAM J. Appl. Math. 56(6), 1664-1693 (1996) · Zbl 0869.35068
[11] Bonnet, M., Burel, A., Duruflé, M., Joly, P.: Effective transmission conditions for thin-layer transmission problems in elastodynamics. The case of a planar layer model. ESAIM: Math. Model. Numer. Anal. 50, 43-75 (2016) · Zbl 1339.35312
[12] Bourgeois, L., Chaulet, N., Haddar, H.: On simultaneous identification of the shape and generalized impedance boundary condition in obstacle scattering. SIAM J. Sci. Comput. 34(3), A1824-A1848 (2012) · Zbl 1247.35199
[13] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext Springer, New York (2011) · Zbl 1220.46002
[14] Cakoni, F., Kress, R.: Integral equation methods for the inverse obstacle problem with generalized impedance boundary condition. Inverse Probl. 29(1), 015005 (2013) (19 pages) · Zbl 1302.65146
[15] Cakoni, F., Hu, Y., Kress, R.: Simultaneous reconstruction of shape and generalized impedance functions in electrostatic imaging. Inverse Probl. 30(10), 105009 (2014) (19 pages) · Zbl 1305.65222
[16] Caloz, G., Costabel, M., Dauge, M., Vial, G.: Asymptotic expansion of the solution of an interface problem in a polygonal domain with thin layer. Asymptot. Anal. 50(1-2), 121-173 (2006) · Zbl 1136.35021
[17] Caubet, F., Dambrine, M., Kateb, D.: Shape optimization methods for the inverse obstacle problem with generalized impedance boundary conditions. Inverse Probl. 29(11), 115011 (2013) (26 pages) · Zbl 1292.65069
[18] Caubet, F., Haddar, H., Li, J.-R., Van Nguyen, D.: New transmission condition accounting for diffusion anisotropy in thin layers applied to diffusion MRI. ESAIM: M2AN 51, 1279-1301 (2017) · Zbl 1378.35309
[19] Chaulet, N., Haddar, H.: Electromagnetic inverse shape problem for coated obstacles. Adv. Comput. Math. 41(6), 1179-1205 (2015) · Zbl 1336.35365
[20] Ciarlet, P.G.: Mathematical Elasticity: Three-Dimensional Elasticity, vol. I. Studies in Mathematics and Its Applications, vol. 20. North-Holland, Amsterdam (1988) · Zbl 0648.73014
[21] Ciarlet, P.G.: Mathematical Elasticity: Theory of Shells, vol. III. Studies in Mathematics and Its Applications, vol. 29. North-Holland, Amsterdam (2000) · Zbl 0953.74004
[22] Coatléven, J., Haddar, H., Li, J.-R.: A macroscopic model including membrane exchange for diffusion MRI. SIAM J. Appl. Math. 74(2), 516-546 (2014) · Zbl 1302.35037
[23] Costabel, M., Le Louër, F.: Shape derivatives of boundary integral operators in electromagnetic scattering. Part I: Shape differentiability of pseudo-homogeneous boundary integral operators. Integral Equ. Oper. Theory 72(4), 509-535 (2012) · Zbl 1331.47045
[24] Dambrine, M., Laurain, A.: A first order approach for worst-case shape optimization of the compliance for a mixture in the low contrast regime. Struct. Multidiscip. Optim. 54(2), 215-231 (2016)
[25] Dambrine, M., Greff, I., Harbrecht, H., Puig, B.: Numerical solution of the homogeneous Neumann boundary value problem on domains with a thin layer of random thickness. J. Comput. Phys. 330, 943-959 (2017) · Zbl 1380.65409
[26] Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31(139), 629-651 (1977) · Zbl 0367.65051
[27] Faou, E.: Elasticity on a thin shell: formal series solution. Asymptot. Anal. 31(3-4), 317-361 (2002) · Zbl 1046.74031
[28] Gao, Z.M., Ma, Y.C., Zhuang, H.W.: Shape optimization for Navier-Stokes flow. Inverse Probl. Sci. Eng. 16(5), 583-616 (2008) · Zbl 1258.76079
[29] Garreau, S., Guillaume, P., Masmoudi, M.: The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39(6), 1756-1778 (2001) · Zbl 0990.49028
[30] Givoli, D.: Nonreflecting boundary conditions. J. Comput. Phys. 94(1), 1-29 (1991) · Zbl 0731.65109
[31] Haddar, H., Joly, P.: Effective boundary conditions for thin ferromagnetic layers: the one-dimensional model. SIAM J. Appl. Math. 61(4), 1386-1417 (2000/01) · Zbl 0973.78011
[32] Haddar, H., Joly, P., Nguyen, H.-M.: Generalized impedance boundary conditions for scattering by strongly absorbing obstacles: the scalar case. Math. Models Methods Appl. Sci. 15(8), 1273-1300 (2005) · Zbl 1084.35102
[33] Haddar, H., Joly, P., Nguyen, H.-M.: Generalized impedance boundary conditions for scattering problems from strongly absorbing obstacles: the case of Maxwell’s equations. Math. Models Methods Appl. Sci. 18(10), 1787-1827 (2008) · Zbl 1170.35094
[34] Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization: Theory, Approximation, and Computation. Advances in Design and Control, vol. 7. SIAM, Philadelphia (2003) · Zbl 1020.74001
[35] Hecht, F.: New development in freefem++. J. Numer. Math. 20(3-4), 251-265 (2012) · Zbl 1266.68090
[36] Henrot, A., Pierre, M.: Shape Variation and Optimization: A Geometrical Analysis. EMS Tracts in Mathematics, vol. 28. Eur. Math. Soc., Zürich (2018). English version of the French publication with additions and updates · Zbl 1392.49001
[37] Hlaváček, I.: Inequalities of Korn’s type, uniform with respect to a class of domains. Apl. Mat. 34(2), 105-112 (1989) · Zbl 0673.49003
[38] Jäger, W., Mikelić, A.: On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170(1), 96-122 (2001) · Zbl 1009.76017
[39] Kateb, D., Le Louër, F.: Generalized impedance boundary conditions and shape derivatives for 3D Helmholtz problems. Math. Models Methods Appl. Sci. 26(10), 1995-2033 (2016) · Zbl 1346.35017
[40] Le Louër, F.: A domain derivative-based method for solving elastodynamic inverse obstacle scattering problems. Inverse Probl. 31(11), 115006 (2015) (27 pages) · Zbl 1329.35353
[41] Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice Hall, New York (1969)
[42] Murat, F., Simon, J.: Sur le contrôle par un domaine géométrique. Rapport du L.A. 189, Université de Paris VI, France (1976)
[43] Něcas, J.r.: Direct Methods in the Theory of Elliptic Equations. Springer Monographs in Mathematics. Springer, Heidelberg (2012). Translated from the 1967 French original by Gerard Tronel and Alois Kufner, Editorial coordination and preface by Šárka Nečasová and a contribution by Christian G. Simader · Zbl 1246.35005
[44] Nédélec, J.-C.: Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems. Applied Mathematical Sciences, vol. 144. Springer, New York (2001) · Zbl 0981.35002
[45] Novotny, A.A., Sokołowski, J.: Topological Derivatives in Shape Optimization. Interaction of Mechanics and Mathematics. Springer, Heidelberg (2013) · Zbl 1276.35002
[46] Novotny, A.A., Feijóo, R.A., Taroco, E., Padra, C.: Topological sensitivity analysis for three-dimensional linear elasticity problem. Comput. Methods Appl. Mech. Eng. 196(41-44), 4354-4364 (2007) · Zbl 1173.74374
[47] Poignard, C.: Generalized impedance boundary condition at high frequency for a domain with thin layer: the circular case. Appl. Anal. 86(12), 1549-1568 (2007) · Zbl 1143.35094
[48] Sokołowski, J., Zolésio, J.-P.: Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer Series in Computational Mathematics, vol. 16. Springer, Berlin (1992) · Zbl 0761.73003
[49] Vial, G.: Analyse multi-échelle et conditions aux limites approchées pour un problème avec couche mince dans un domaine à coin. Ph.D. thesis, Université de Rennes 1 (2003)
[50] Vogelius, M., Xu, J.-M.: A nonlinear elliptic boundary value problem related to corrosion modeling. Q. Appl. Math. 56(3), 479-505 (1998) · Zbl 0954.35067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.