×

Topology optimization of functionally graded anisotropic composite structures using homogenization design method. (English) Zbl 1506.74282

Summary: This paper proposes a topology optimization method that is capable of simultaneous design for structural topology, stiff material (i.e. fiber) layout, and its orientations in functionally graded anisotropic composite structures. Functionally graded composites are inhomogeneous materials with continuously varying spatial composition. The spatial variation in material properties might enable better performance than an isotropic multi-material structure or fiber-reinforced composite structure with fixed fiber volume fraction. In order to enable the simultaneous design of composite topology, spatially varying fiber material layout and orientation, a homogenization design method (HDM) is applied together with a solid isotropic material with penalization (SIMP) method taking into account the advantage of each method. The SIMP method is efficient in determining discrete material states while avoiding intermediate states. Thus, it is applied to determine whether a material is void or a composite state. The HDM allows intermediate material states because it considers true anisotropic composite materials. Taking this advantage, the HDM method is applied to optimize spatially varying anisotropic fiber material layout and orientation. The optimization result of the fiber material is visualized using the projection method proposed for periodic composite structures. To validate the effectiveness of the proposed method, numerical examples for compliance minimization problems are provided.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74E10 Anisotropy in solid mechanics
74E30 Composite and mixture properties
Full Text: DOI

References:

[1] Cui, X.; Wang, S.; Hu, S. J., A method for optimal design of automotive body assembly using multi-material construction, Mater. Des., 29, 381-387 (2008)
[2] Hull, D.; Clyne, T. W., (An Introduction to Composite Materials (Cambridge Solid State Science Series) (1996), Cambridge University Press: Cambridge University Press Cambridge)
[3] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Math., 71, 197-224 (1988) · Zbl 0671.73065
[4] Suzuki, K.; Kikuchi, N., A homogenization method for shape and topology optimization, Comput. Methods Appl. Math., 93, 291-318 (1991) · Zbl 0850.73195
[5] Bendsøe, M. P.; Sigmund, O., Material interpolation schemes in topology optimization, Arch. Appl. Mech., 69, 635-654 (1999) · Zbl 0957.74037
[6] Sigmund, O.; Maute, K., Topology optimization approaches: a comparative review, Struct. Multidiscip. Optim., 48, 1031-1055 (2013)
[7] Park, J.; Sutradhar, A., A multi-resolution method for 3D multi-material topology optimization, Comput. Methods Appl. Math., 285, 571-586 (2015) · Zbl 1423.74757
[8] Zuo, W.; Saitou, K., Multi-material topology optimization using ordered SIMP interpolation, Struct. Multidiscip. Optim., 55, 477-491 (2017)
[9] Li, D.; Kim, I. Y., Multi-material topology optimization for practical lightweight design, Struct. Multidiscip. Optim., 58, 1081-1094 (2018)
[10] Seong, H. K.; Kim, C. W.; Yoo, J.; Lee, J., Multiphase topology optimization with a single variable using the phase-field design method, Internat. J. Numer. Methods Engrg., 119, 334-360 (2019) · Zbl 1425.74379
[11] Gaynor, A. T.; Meisel, N. A.; Williams, C. B.; Guest, J. K., Multiple-material topology optimization of compliant mechanisms created via PolyJet three-dimensional printing, J. Manuf. Sci. Eng., 136 (2014)
[12] Gibiansky, L. V.; Sigmund, O., Multiphase composites with extremal bulk modulus, J. Mech. Phys. Solids, 48, 461-498 (2000) · Zbl 0989.74060
[13] Huang, X.; Zhou, S. W.; Xie, Y. M.; Li, Q., Topology optimization of microstructures of cellular materials and composites for macrostructures, Comput. Mater. Sci., 67, 397-407 (2013)
[14] Takezawa, A.; Kobashi, M., Design methodology for porous composites with tunable thermal expansion produced by multi-material topology optimization and additive manufacturing, Compos. B: Eng., 131, 21-29 (2017)
[15] Bjørk, R.; Bahl, C. R.H.; Insinga, A. R., Topology optimized permanent magnet systems, J. Magn. Magn. Mater., 437, 78-85 (2017)
[16] Lee, J.; Yoon, M.; Nomura, T.; Dede, E. M., Topology optimization for design of segmented permanent magnet arrays with ferromagnetic materials, J. Magn. Magn. Mater., 449, 571-581 (2018)
[17] Pelletier, J. L.; Vel, S. S., Multi-objective optimization of fiber reinforced composite laminates for strength, stiffness and minimal mass, Comput. Struct., 84, 2065-2080 (2006)
[18] Bruyneel, M.; Fleury, C., Composite structures optimization using sequential convex programming, Adv. Eng. Softw., 33, 697-711 (2002) · Zbl 1023.74501
[19] Dede, E. M., Simulation and optimization of heat flow via anisotropic material thermal conductivity, Comput. Mater. Sci., 50, 510-515 (2010)
[20] Lindgaard, E.; Lund, E., Optimization formulations for the maximum nonlinear buckling load of composite structures, Struct. Multidiscip. Optim., 43, 631-646 (2011) · Zbl 1274.74121
[21] Ringertz, U. T., On finding the optimal distribution of material properties, Struct. Multidiscip. Optim., 5, 265-267 (1993)
[22] Zowe, J.; Kočvara, M.; Bendsøe, M. P., Free material optimization via mathematical programming, Math. Program., 79, 445-466 (1997) · Zbl 0886.90145
[23] Henrichsen, S. R.; Lindgaard, E.; Lund, E., Free material stiffness design of laminated composite structures using commercial finite element analysis codes, Struct. Multidiscip. Optim., 51, 1097-1111 (2015)
[24] Stegmann, J.; Lund, E., Discrete material optimization of general composite shell structures, Internat. J. Numer. Methods Engrg., 62, 2009-2027 (2005) · Zbl 1118.74343
[25] Bruyneel, M., SFP - a new parameterization based on shape functions for optimal material selection: application to conventional composite plies, Struct. Multidiscip. Optim., 43, 17-27 (2011)
[26] Gao, T.; Zhang, W.; Duysinx, P., A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate, Internat. J. Numer. Methods Engrg., 91, 98-114 (2012) · Zbl 1246.74043
[27] Duan, Z.; Yan, J.; Zhao, G., Integrated optimization of the material and structure of composites based on the Heaviside penalization of discrete material model, Struct. Multidiscip. Optim., 51, 721-732 (2015)
[28] Wu, C.; Gao, Y.; Fang, J.; Lund, E.; Li, Q., Discrete topology optimization of ply orientation for a carbon fiber reinforced plastic (CFRP) laminated vehicle door, Mater. Des., 128, 9-19 (2017)
[29] Nomura, T.; Dede, E. M.; Lee, J.; Yamasaki, S.; Matsumori, T.; Kawamoto, A.; Kikuchi, N., General topology optimization method with continuous and discrete orientation design using isoparametric projection, Internat. J. Numer. Methods Engrg., 101, 571-605 (2015) · Zbl 1352.74248
[30] Zhou, Y.; Nomura, T.; Saitou, K., Multi-component topology and material orientation design of composite structures (MTO-C), Comput. Methods Appl. Math., 342, 438-457 (2018) · Zbl 1440.74333
[31] Nomura, T.; Kawamoto, A.; Kondoh, T.; Dede, E. M.; Lee, J.; Song, Y.; Kikuchi, N., Inverse design of structure and fiber orientation by means of topology optimization with tensor field variables, Compos. B: Eng., 176, Article 107187 pp. (2019)
[32] Petrovic, M.; Nomura, T.; Yamada, T.; Izui, K.; Nishiwaki, S., Orthotropic material orientation optimization method in composite laminates, Struct. Multidiscip. Optim., 57, 815-828 (2018)
[33] Lee, J.; Lee, S. W.; Kim, K.; Lee, J., Multi-material topology optimization of magnetic actuator with segmented permanent magnets, IEEE Trans. Magn., 54, Article 8202706 pp. (2018)
[34] Lee, J.; Yoo, J.; Min, S.; Yoon, M., Topology optimization of anisotropic magnetic composites in actuators using homogenization design method, Struct. Multidiscip. Optim., 60, 1423-1436 (2019)
[35] Jiang, D.; Hoglund, R.; Smith, D. E., Continuous fiber angle topology optimization for polymer composite deposition additive manufacturing applications, Fibers, 7, 14 (2019)
[36] Chandrasekhar, A.; Kumar, T.; Suresh, K., Build optimization of fiber-reinforced additively manufactured components, Struct. Multidiscip. Optim., 61, 77-90 (2019)
[37] Safonov, A. A., 3D topology optimization of continuous fiber-reinforced structures via natural evolution method, Compos. Struct., 215, 289-297 (2019)
[38] Sugiyama, K.; Matsuzaki, R.; Malakhov, A. V.; Polilov, A. N.; Ueda, M.; Todoroki, A.; Hirano, Y., 3D printing of optimized composites with variable fiber volume fraction and stiffness using continuous fiber, Compos. Sci. Technol., 186, Article 107905 pp. (2020)
[39] Udupa, G.; Rao, S.; Gangadharan, K. V., Functionally graded composite materials: an overview, Procedia Mater. Sci., 5, 1291-1299 (2014)
[40] Li, H.; Luo, Z.; Gao, L.; Walker, P., Topology optimization for functionally graded cellular composites with metamaterials by level sets, Comput. Methods Appl. Math., 328, 340-364 (2018) · Zbl 1439.74285
[41] Zong, H.; Liua, H.; Ma, Q.; Tian, Y.; Zhou, M.; Wang, M. Y., VCUT level set method for topology optimization of functionally graded cellular structures, Comput. Methods Appl. Math., 354, 487-505 (2019) · Zbl 1441.74184
[42] Carraturo, M.; Rocca, E.; Bonetti, E.; Hömberg, D.; Alessandro Reali, A.; Auricchio, F., Graded-material design based on phase-field and topology optimization, Comput. Mech., 64, 1589-1600 (2019) · Zbl 1462.74129
[43] Yi, B.; Zhou, Y.; Yoon, G. H.; Saitou, K., Topology optimization of functionally-graded lattice structures with buckling constraints, Comput. Methods Appl. Math., 354, 593-619 (2019) · Zbl 1441.74179
[44] Cheng, L.; Bai, J.; To, A. C., Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints, Comput. Methods Appl. Math., 344, 334-359 (2019) · Zbl 1440.74284
[45] Xia, Q.; Wang, M. Y., Simultaneous optimization of the material properties and the topology of functionally graded structures, Comput. Aided Des., 40, 660-675 (2008)
[46] Almeida, S. R.M.; Paulino, G. H.; Silva, E. C.N., Layout and material gradation in topology optimization of functionally graded structures: a global-local approach, Struct. Multidiscip. Optim., 42, 855-868 (2010) · Zbl 1274.74305
[47] Taheri, A. H.; Suresh, K., An isogeometric approach to topology optimization of multi-material and functionally graded structures, Internat. J. Numer. Methods Engrg., 109, 668-696 (2017) · Zbl 07874319
[48] Conlan-Smith, C.; Bhattacharyya, A.; James, K. A., Optimal design of compliant mechanisms using functionally graded materials, Struc. Multidisc. Optim., 57, 197-212 (2018)
[49] Lee, J.; Kim, D.; Nomura, T.; Dede, E. M.; Yoo, J., Topology optimization for continuous and discrete orientation design of functionally graded fiber-reinforced composite structures, Compos. Struct., 201, 217-233 (2018)
[50] Hassani, B.; Hinton, E., A review of homogenization and topology optimization I - homogenization theory for media with periodic structure, Comput. Struct., 69, 719-738 (1998) · Zbl 0948.74048
[51] Bensoussan, A.; Lions, J.-L.; Papanicolaou, G., Asymptotic Analysis for Periodic Structures (2011), American Mathematical Society · Zbl 1229.35001
[52] Groen, J. P.; Sigmund, O., Homogenization-based topology optimization for high-resolution manufacturable microstructures, Internat. J. Numer. Methods Engrg., 113, 1148-1163 (2018) · Zbl 07874747
[53] Larsen, S. D.; Sigmund, O.; Groen, J. P., Optimal truss and frame design from projected homogenization-based topology optimization, Struct. Multidiscip. Optim., 57, 1461-1474 (2018)
[54] Allaire, G.; Geoffroy-Donders, P.; Pants, O., Topology optimization of modulated and oriented periodic microstructures by the homogenization method, Comput. Math. Appl., 2197-2229 (2019) · Zbl 1443.74246
[55] Kawamoto, A.; Matsumori, T.; Yamasaki, S.; Nomura, T.; Kondoh, T.; Nishiwaki, S., Heaviside projection based topology optimization by a PDE-filtered scalar function, Struct. Multidiscip. Optim., 44, 19-24 (2011) · Zbl 1274.74349
[56] Lazarov, B. S.; Sigmund, O., Filters in topology optimization based on Helmholtz-type differential equations, Internat. J. Numer. Methods Engrg., 86, 765-781 (2011) · Zbl 1235.74258
[57] Guest, J. K.; Prévost, J. H.; Belytschko, T., Achieving minimum length scale in topology optimization using nodal design variables and projection functions, Internat. J. Numer. Methods Engrg., 61, 238-254 (2004) · Zbl 1079.74599
[58] Svanberg, K., The method of moving asymptotes – a new method for structural optimization, Internat. J. Numer. Methods Engrg., 24, 359-373 (1987) · Zbl 0602.73091
[59] Svanberg, K., A class of globally convergent optimization methods based on conservative convex separable approximations, SIAM J. Optim., 12, 555-573 (2002) · Zbl 1035.90088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.