×

An inverse problem: recovering the fragmentation kernel from the short-time behaviour of the fragmentation equation. (Un problème inverse: estimer le noyau de fragmentation à partir du comportement en temps court de la solution de l’équation de fragmentation.) (English. French summary) Zbl 07914802

Summary: Given a phenomenon described by a self-similar fragmentation equation, how to infer the fragmentation kernel from experimental measurements of the solution? To answer this question at the basis of our work, a formal asymptotic expansion suggested us that using short-time observations and initial data close to a Dirac measure should be a well-adapted strategy. As a necessary preliminary step, we study the direct problem, i.e. we prove existence, uniqueness and stability with respect to the initial data of non negative measure-valued solutions when the initial data is a compactly supported, bounded, non negative measure. A representation of the solution as a power series in the space of Radon measures is also shown. This representation is used to propose a reconstruction formula for the fragmentation kernel, using short-time experimental measurements when the initial data is close to a Dirac measure. We prove error estimates in Total Variation and Bounded Lipshitz norms; this gives a quantitative meaning to what a “short” time observation is. For general initial data in the space of compactly supported measures, we provide estimates on how the short-time measurements approximate the convolution of the fragmentation kernel with a suitably-scaled version of the initial data. The series representation also yields a reconstruction formula for the Mellin transform of the fragmentation kernel \(\kappa\) and an error estimate for such an approximation. Our analysis is complemented by a numerical investigation.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
92C40 Biochemistry, molecular biology
35R30 Inverse problems for PDEs
35R06 PDEs with measure
35R09 Integro-partial differential equations
45Q05 Inverse problems for integral equations
46F12 Integral transforms in distribution spaces
30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable
35C05 Solutions to PDEs in closed form
35C20 Asymptotic expansions of solutions to PDEs
28C05 Integration theory via linear functionals (Radon measures, Daniell integrals, etc.), representing set functions and measures
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35R60 PDEs with randomness, stochastic partial differential equations

References:

[1] Agoshkov, V. I.; Dubovski, P. B., Solution of the reconstruction problem of a source function in the coagulation-fragmentation equation, Russ. J. Numer. Anal. Math. Model., 17, 4, 319-330, 2002 · Zbl 1013.65145 · doi:10.1515/rnam-2002-0402
[2] Alomari, O.; Dubovski, P. B., Recovery of the integral kernel in the kinetic fragmentation equation, Inverse Probl. Sci. Eng., 21, 1, 171-181, 2013 · Zbl 1273.45009 · doi:10.1080/17415977.2012.677446
[3] Banasiak, J.; Arlotti, L., Perturbations of Positive Semigroups with Applications, 2006, Springer · Zbl 1097.47038
[4] Ball, J. M.; Carr, J., The discrete coagulation-fragmentation equations: Existence, uniqueness, and density conservation, J. Stat. Phys., 61, 1-2, 203-234, 1990 · Zbl 1217.82050 · doi:10.1007/BF01013961
[5] Balagué, D.; Cañizo, J. A.; Gabriel, P., Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates, Kinet. Relat. Models, 6, 2, 219-243, 2013 · Zbl 1270.35095 · doi:10.3934/krm.2013.6.219
[6] Bansaye, V.; Cloez, B.; Gabriel, P.; Marguet, A., A non-conservative Harris ergodic theorem, J. Lond. Math. Soc., 106, 3, 2459-2510, 2022 · Zbl 07730868 · doi:10.1112/jlms.12639
[7] Bertoin, J., The asymptotic behavior of fragmentation processes, J. Eur. Math. Soc., 5, 4, 395-416, 2003 · Zbl 1042.60042 · doi:10.1007/s10097-003-0055-3
[8] Bertoin, J., Random Fragmentation and Coagulation Processes, 102, 2006, Cambridge University Press · Zbl 1107.60002 · doi:10.1017/CBO9780511617768
[9] Baumeister, J.; Leitão, A., Topics in inverse problems, 2005, Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro · Zbl 1087.35094
[10] Banasiak, J.; Lamb, W.; Laurencot, P., Analytic Methods for Coagulation-Fragmentation Models, I, 2019, Chapman et Hall; CRC Press · Zbl 1434.82001 · doi:10.1201/9781315154428
[11] Beal, D. M.; Tournus, M.; Marchante, R.; Purton, T.; Smith, D. P.; Tuite, M. F.; Doumic, M.; Xue, W.-F., The Division of Amyloid Fibrils: Systematic Comparison of Fibril Fragmentation Stability by Linking Theory with Experiments, iScience, 23, 9, 2020 · doi:10.1016/j.isci.2020.101512
[12] Bertoin, J.; Watson, A. R., Probabilistic aspects of critical growth-fragmentation equations, Adv. Appl. Probab., 48, A, 37-61, 2016 · Zbl 1426.35213 · doi:10.1017/apr.2016.41
[13] Carrillo, J. A.; Colombo, R. M.; Gwiazda, P.; Ulikowska, A., Structured populations, cell growth and measure valued balance laws, J. Differ. Equations, 252, 4, 3245-3277, 2012 · Zbl 1250.47080 · doi:10.1016/j.jde.2011.11.003
[14] Cáceres, M. J.; Cañizo, J. A.; Mischler, S., Rate of convergence to the remarkable state for the self-similar fragmentation and growth-fragmentation equations, J. Math. Pures Appl., 96, 4, 334-362, 2011 · Zbl 1235.35034 · doi:10.1016/j.matpur.2011.01.003
[15] Cao, H.; Pereverzev, S. V., Natural linearization for the identification of a diffusion coefficient in a quasi-linear parabolic system from short-time observations, Inverse Probl., 22, 6, 2311-2330, 2006 · Zbl 1105.35139 · doi:10.1088/0266-5611/22/6/024
[16] Doumic, M.; Escobedo, M.; Tournus, M., Estimating the division rate and kernel in the fragmentation equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 35, 7, 1847-1884, 2018 · Zbl 1406.35427 · doi:10.1016/j.anihpc.2018.03.004
[17] Doumic, M.; Escobedo, M.; Tournus, M.; Xue, W.-F., Insights into the dynamic trajectories of protein filament division revealed by numerical investigation into the mathematical model of pure fragmentation, PLoS Comput. Biol., 17, 9, 21, 2021 · doi:10.1371/journal.pcbi.1008964
[18] Dieudonné, J., Calcul infinitésimal, 1968, Hermann · Zbl 0155.10001
[19] Dubovski, P. B.; Stewart, I. W., Existence, uniqueness and mass conservation for the coagulation-fragmentation equation, Math. Methods Appl. Sci., 19, 571-591, 1996 · Zbl 0852.45016 · doi:10.1002/(SICI)1099-1476(19960510)19:7<571::AID-MMA790>3.0.CO;2-Q
[20] Doumic, M.; van Brunt, B., CIMPA School on Mathematical Models in Biology and Medicine, 62, Explicit solution and fine asymptotics for a critical growth-fragmentation equation, 30-42, 2018, EDP Sci., Les Ulis · Zbl 1421.35049
[21] Engl, H. W.; Hanke, M.; Neubauer, A., Regularization of inverse problems, 375, 1996, Springer · Zbl 0859.65054 · doi:10.1007/978-94-009-1740-8
[22] Escobedo, M.; Mischler, S.; Ricard, R. M., On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 22, 1, 99-125, 2005 · Zbl 1130.35025 · doi:10.1016/j.anihpc.2004.06.001
[23] Filippov, A. F., On the Distribution of the Sizes of Particles which Undergo Splitting, Theory Probab. Appl., 6, 3, 275-294, 1961 · Zbl 0242.60050 · doi:10.1137/1106036
[24] Giné, E.; Nickl, R., Mathematical foundations of infinite-dimensional statistical models, 40, 2016, Cambridge University Press · Zbl 1458.62014 · doi:10.1017/CBO9781107337862
[25] Haas, B., Asymptotic behavior of solutions of the fragmentation equation with shattering: An approach via self-similar Markov processes, Ann. Appl. Probab., 20, 2, 382-429, 2010 · Zbl 1193.60054 · doi:10.1214/09-AAP622
[26] Hanin, L. G., Monge Ampère equation: applications to geometry and optimization (Deerfield Beach, FL, 1997), 226, An extension of the Kantorovich norm, 113-130, 1999, American Mathematical Society · Zbl 0926.46009
[27] Honoré, S.; Hubert, F.; Tournus, M.; White, D., A growth-fragmentation approach for modeling microtubule dynamic instability, Bull. Math. Biol., 81, 3, 722-758, 2019 · Zbl 1415.92073 · doi:10.1007/s11538-018-0531-2
[28] Hellmuth, K.; Klingenberg, C.; Li, Q.; Tang, M., Kinetic chemotaxis tumbling kernel determined from macroscopic quantities, SIAM J. Math. Anal., 56, 1, 568-587, 2024 · doi:10.1137/22M1499911
[29] Hoang, V. H.; Pham Ngoc, T. M.; Rivoirard, V.; Tran, V. C., Nonparametric estimation of the fragmentation kernel based on a PDE stationary distribution approximation, Scand. J. Statist., 49, 4-43, 2019 · Zbl 07638421 · doi:10.1111/sjos.12504
[30] Kostoglou, M.; Karabelas, A. J., On the self-similar solution of fragmentation equation: Numerical evaluation with implications for the inverse problem, J. Colloid Interface Sci., 284, 571-581, 2005 · doi:10.1016/j.jcis.2004.10.029
[31] Kolmogorov, A. N., On the logarithmic normal distribution of particle sizes under grinding, Dokl. Akad. Nauk SSSR, 31, 99-101, 1941 · Zbl 0025.19602
[32] Li, Z.; Cheng, X.; Li, G., An inverse problem in time-fractional diffusion equations with nonlinear boundary condition, J. Math. Phys., 60, 9, 2019 · Zbl 1480.60240
[33] Melzak, Z. A., A Scalar Transport Equation, Trans. Am. Math. Soc., 85, 2, 547-560, 1957 · Zbl 0077.30505 · doi:10.1090/S0002-9947-1957-0087880-6
[34] Misra, O. P.; Lavoine, J. L., Transform analysis of generalized functions, 119, 1986, North-Holland · Zbl 0583.46032
[35] McLaughlin, D. J.; Lamb, W.; McBride, A. C., An Existence and Uniqueness Result for a Coagulation and Multiple-Fragmentation Equation, SIAM J. Math. Anal., 28, 5, 1173-1190, 1997 · Zbl 0892.47043 · doi:10.1137/S0036141095291713
[36] Montroll, E. W.; Simha, R., Theory of Depolymerization of Long Chain Molecules, J. Chem. Phys., 8, 721-726, 1940 · doi:10.1063/1.1750807
[37] Norris, J. R., Smoluchowski’s coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent, Ann. Appl. Probab., 9, 1, 78-109, 1999 · Zbl 0944.60082 · doi:10.1214/aoap/1029962598
[38] Narsimhan, G.; Ramkrishna, D.; Gupta, J. P., Analysis of drop size distributions in lean liquid-liquid dispersions, AIChE J., 26, 6, 991-1000, 1980 · doi:10.1002/aic.690260614
[39] Perthame, B., Transport equations in biology, 2007, Birkhäuser · Zbl 1185.92006 · doi:10.1007/978-3-7643-7842-4
[40] Perthame, B.; Ryzhik, L., Exponential decay for the fragmentation or cell-division equation, J. Differ. Equations, 210, 1, 155-177, 2005 · Zbl 1072.35195 · doi:10.1016/j.jde.2004.10.018
[41] Piccoli, B.; Rossi, F., Generalized Wasserstein distance and its application to transport equations with source, Arch. Ration. Mech. Anal., 211, 1, 335-358, 2014 · Zbl 1480.35378 · doi:10.1007/s00205-013-0669-x
[42] Piccoli, B.; Rossi, F.; Tournus, M., A Wasserstein norm for signed measures, with application to non local transport equation with source term, Commun. Math. Sci., 21, 5, 1279-1301, 2023 · Zbl 1527.35336 · doi:10.4310/CMS.2023.v21.n5.a4
[43] Ramkrishna, D., Drop-breakage in agitated liquid-liquid dispersions, Chem. Eng. Sci., 29, 987-992, 1974 · doi:10.1016/0009-2509(74)80090-4
[44] Stewart, I. W., On the coagulation-fragmentation equation, Z. Angew. Math. Phys., 41, 6, 917-924, 1990 · Zbl 0734.45009 · doi:10.1007/BF00945844
[45] Valentas, K. J.; Bilous, O.; Amundson, N. R., Analysis of Breakage in Dispersed Phase Systems, Ind. Eng. Chem. Fundamen., 5, 2, 271-279, 1966 · doi:10.1021/i160018a019
[46] Villani, C., Topics in optimal transportation, 58, 2003, American Mathematical Society · Zbl 1106.90001 · doi:10.1007/b12016
[47] Xue, W.-F.; Homans, S. W.; Radford, S. E., Amyloid fibril length distribution quantified by atomic force microscopy single-particle image analysis, Protein Eng. Des. Sel., 22, 8, 489-496, 2009 · doi:10.1093/protein/gzp026
[48] Xue, W.-F.; Radford, S. E., An Imaging and Systems Modeling Approach to Fibril Breakage Enables Prediction of Amyloid Behavior, Biophys. Journal, 105, 2811-2819, 2013 · doi:10.1016/j.bpj.2013.10.034
[49] Ziff, R. M.; McGrady, E. D., The kinetics of cluster fragmentation and depolymerisation, J. Phys. A. Math. Gen., 18, 3027-3037, 1985 · doi:10.1088/0305-4470/18/15/026
[50] Ziff, R. M.; McGrady, E. D., Kinetics of polymer degradation, Macromolecules, 19, 10, 2513-2519, 1986 · doi:10.1021/ma00164a010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.