×

On non-surjective coarse isometries between Banach spaces. (English) Zbl 1423.46014

Summary: Assume that \(X\), \(Y\) are real Banach spaces, \(Y\) has uniform convexity of type \(p\) (\(\geq 1)\), and \(f:X\rightarrow Y\) is a standard coarse isometry. In this paper, we show that, if \[ \int^\infty_1\frac{\varepsilon_f(s)^{\frac{1}{p}}}{s^{1+\frac{1}{p}}}\,ds<\infty, \] then there is a linear isometry \(U:X\rightarrow Y\) so that \[ \| f(x)-Ux\| =o(\| x\|)\text{ as }\| x\|\to\infty, \] where \(\varepsilon_f:\mathbb{R}^+ \to \mathbb{R}^+\) is defined by \[ \varepsilon_f(t)=\sup \{\left| \| f(x)-f(y)\| -\| x-y\| \right| : x,y\in X,\,\| x-y\| \geq t\}. \] Representation properties of coarse isometries in free ultrafilter limits on \(\mathbb{N}\) are also discussed.

MSC:

46B04 Isometric theory of Banach spaces
46B20 Geometry and structure of normed linear spaces
46B85 Embeddings of discrete metric spaces into Banach spaces; applications in topology and computer science
Full Text: DOI

References:

[1] Benyamini, Y.; Lindenstrauss, J., Geometric Nonlinear Functional Analysis I, 48 (2000), Amer. Math. Soc.: Amer. Math. Soc., Providence, RI · Zbl 0946.46002
[2] Cheng, L.; Cheng, Q.; Tu, K.; Zhang, J., A universal theorem for stability of ε-isometries on Banach spaces, J. Funct. Anal., 269, 1, 199-214 (2015) · Zbl 1326.46008
[3] Cheng, L.; Dong, Y.; Zhang, W., On stability of Nonsurjective ε-isometries of Banach spaces, J. Funct. Anal., 264, 3, 713-734 (2013) · Zbl 1266.46008
[4] Diestel, J., Geometry of Banach spaces – selected topics, 485 (1975), Springer-Verlag: Springer-Verlag, Berlin/Heidelberg/New York · Zbl 0307.46009
[5] Dolinar, G., Generalized stability of isometries, J. Math. Anal. Appl., 242, 1, 39-56 (2000) · Zbl 0956.46007
[6] Enflo, P., Banach spaces which can be given an equivalent uniformly convex norm, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 1972), Israel J. Math., 13, 2-3, 281-288 (1972) · Zbl 0259.46012
[7] Figiel, T., On non linear isometric embeddings of normed linear spaces, Bull. Acad. Polon. Sci. Math. Astro. Phys., 16, 185-188 (1968) · Zbl 0155.18301
[8] Gevirtz, J., Stability of isometries on Banach spaces, Proc. Amer. Math. Soc., 89, 633-636 (1983) · Zbl 0561.46012
[9] Godefroy, G.; Kalton, N. J., Lipschitz-free Banach spaces, Studia Math., 159, 121-141 (2003) · Zbl 1059.46058
[10] Gruber, P. M., Stability of isometries, Trans. Amer. Math. Soc., 245, 263-277 (1978) · Zbl 0393.41020
[11] Hanner, O., On uniform convexity of Lp and ℓp, Ark. f. Mat., 3, 239-244 (1956) · Zbl 0071.32801
[12] Hyers, D. H.; Ulam, S. M., On approximate isometries, Bull. Amer. Math. Soc., 51, 288-292 (1945) · Zbl 0060.26404
[13] James, R. C., Uniformly non-square Banach spaces, Ann. of Math. Second Series,, 80, 3, 542-550 (1964) · Zbl 0132.08902
[14] Lindenstrauss, J.; Szankowski, A., Non linear perturbations of isometries, Astéisque, 131, 357-371 (1985) · Zbl 0585.47007
[15] Lindenstrauss, J.; Tzafriri, L., Classical Banach Spaces (I) (1977), Springer-Verlag: Springer-Verlag, Berlin/Heidelberg/New York · Zbl 0362.46013
[16] Mazur, S.; Ulam, S., Sur les transformations isométriques d’espaces vectoriels normés, C.R. Acad. Sci. Paris, 194, 946-948 (1932) · Zbl 0004.02103
[17] Nordlander, G., The modulus of convexity in normed linear spaces, Ark. Mat., 4, 15-17 (1960) · Zbl 0092.11402
[18] Omladić, M.; Sěmrl, P., On non linear perturbations of isometries, Math. Ann., 303, 617-628 (1995) · Zbl 0836.46014
[19] Pisier, G., Martingales with values in uniformly convex spaces, Israel J. Math., 20, 3-4, 326-350 (1975) · Zbl 0344.46030
[20] Qian, S., ε-Isometric embeddings, Proc. Amer. Math. Soc., 123, 1797-1803 (1995) · Zbl 0827.47022
[21] Sěmrl, P.; Väisälä, J., Nonsurjective nearisometries of Banach spaces, J. Funct. Anal., 198, 268-278 (2003) · Zbl 1033.46019
[22] Vestfrid, I. A., Stability of almost surjective ε-isometries of Banach spaces, J. Funct. Anal., 269, 7, 2165-2170 (2015) · Zbl 1331.46010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.