×

Lipschitz clustering in metric spaces. (English) Zbl 1487.51008

Summary: In this paper, the Lipschitz clustering property of a metric space refers to the existence of Lipschitz retractions between its finite subset spaces. Obstructions to this property can be either topological or geometric features of the space. We prove that uniformly disconnected spaces have the Lipschitz clustering property, while for some connected spaces, the lack of sufficiently short connecting curves turns out to be an obstruction. This property is shown to be invariant under quasihomogeneous maps, but not under quasisymmetric ones.

MSC:

51F30 Lipschitz and coarse geometry of metric spaces
30L10 Quasiconformal mappings in metric spaces
30L15 Inequalities in metric spaces
54B20 Hyperspaces in general topology
54C15 Retraction

References:

[1] Ahlfors, L.V.: Lectures on quasiconformal mappings, University Lecture Series, vol. 38, second edn. American Mathematical Society, Providence, RI (2006). With supplemental chapters by C. J. Earle, I. Kra, M. Shishikura and J. H. Hubbard · Zbl 1103.30001
[2] Akofor, E., On Lipschitz retraction of finite subsets of normed spaces, Israel J. Math., 234, 2, 777-808 (2019) · Zbl 1436.54011 · doi:10.1007/s11856-019-1935-x
[3] Akofor, E.; Kovalev, LV, Growth rate of Lipschitz constants for retractions between finite subset spaces, Studia Math., 260, 3, 317-326 (2021) · Zbl 1483.54015
[4] Andersen, RN; Marjanović, MM; Schori, RM, Symmetric products and higher-dimensional dunce hats, Topology Proc., 18, 7-17 (1993) · Zbl 0854.54014
[5] Assouad, P., Plongements lipschitziens dans \({ R}^n\), Bull. Soc. Math. France, 111, 4, 429-448 (1983) · Zbl 0597.54015 · doi:10.24033/bsmf.1997
[6] Bačák, M.; Kovalev, LV, Lipschitz retractions in Hadamard spaces via gradient flow semigroups, Canad. Math. Bull., 59, 4, 673-681 (2016) · Zbl 1357.53045 · doi:10.4153/CMB-2016-033-3
[7] Borovikova, M.; Ibragimov, Z., The third symmetric product of \({\mathbb{R}} \), Comput. Methods Funct. Theory, 9, 1, 255-268 (2009) · Zbl 1156.54005 · doi:10.1007/BF03321726
[8] Borsuk, K.; Ulam, S., On symmetric products of topological spaces, Bull. Amer. Math. Soc., 37, 12, 875-882 (1931) · Zbl 0003.22402 · doi:10.1090/S0002-9904-1931-05290-3
[9] Castañeda-Alvarado, E.; Orozco-Zitli, F.; Reyes-Quiroz, MA, Lipschitz retractions on symmetric products of trees (2021), Math: Indian J. Pure Appl, Math · Zbl 1492.54014 · doi:10.1007/s13226-021-00045-4
[10] David, G.; Semmes, S., Fractured fractals and broken dreams, Oxford Lecture Series in Mathematics and its Applications (1997), Oxford University Press, New York: The Clarendon Press, Oxford University Press, New York · Zbl 0887.54001
[11] DiMarco, CA, Fractal curves and rugs of prescribed conformal dimension, Topology Appl., 248, 117-127 (2018) · Zbl 1402.28006 · doi:10.1016/j.topol.2018.08.005
[12] Fouchal, S.; Ahat, M.; Ben Amor, S.; Lavallée, I.; Bui, M., Competitive clustering algorithms based on ultrametric properties, Journal of Computational Science, 4, 4, 219-231 (2013) · doi:10.1016/j.jocs.2011.11.004
[13] Freeman, DM, Unbounded bilipschitz homogeneous Jordan curves, Ann. Acad. Sci. Fenn. Math., 36, 1, 81-99 (2011) · Zbl 1236.30018 · doi:10.5186/aasfm.2011.3605
[14] Freeman, DM, Transitive bi-Lipschitz group actions and bi-Lipschitz parameterizations, Indiana Univ. Math. J., 62, 1, 311-331 (2013) · Zbl 1294.30105 · doi:10.1512/iumj.2013.62.4872
[15] Ghamsari, M.; Herron, DA, Bi-Lipschitz homogeneous Jordan curves, Trans. Amer. Math. Soc., 351, 8, 3197-3216 (1999) · Zbl 0922.30017 · doi:10.1090/S0002-9947-99-02324-7
[16] Heinonen, J., Lectures on analysis on metric spaces (2001), New York: Universitext. Springer-Verlag, New York · Zbl 0985.46008 · doi:10.1007/978-1-4613-0131-8
[17] Heinonen, J.: Lectures on Lipschitz analysis, Report. University of Jyväskylä Department of Mathematics and Statistics, vol. 100. University of Jyväskylä, Jyväskylä (2005) · Zbl 1086.30003
[18] Herron, DA; Mayer, V., Bi-Lipschitz group actions and homogeneous Jordan curves, Illinois J. Math., 43, 4, 770-792 (1999) · Zbl 0935.30017 · doi:10.1215/ijm/1256060691
[19] Hohti, A., On absolute Lipschitz neighbourhood retracts, mixers, and quasiconvexity, Topology Proc., 18, 89-106 (1993) · Zbl 0828.54017
[20] Kovalev, LV, Symmetric products of the line: embeddings and retractions, Proc. Amer. Math. Soc., 143, 2, 801-809 (2015) · Zbl 1323.30074 · doi:10.1090/S0002-9939-2014-12280-5
[21] Kovalev, LV, Lipschitz retraction of finite subsets of Hilbert spaces, Bull. Aust. Math. Soc., 93, 1, 146-151 (2016) · Zbl 1356.54034 · doi:10.1017/S0004972715000672
[22] Kovalev, L.V., Tyson, J.T.: Hyperbolic and quasisymmetric structure of hyperspaces. In: In the tradition of Ahlfors-Bers. IV, Contemp. Math., vol. 432, pp. 151-166. Amer. Math. Soc., Providence, RI (2007) · Zbl 1135.54013
[23] Lang, U.; Plaut, C., Bilipschitz embeddings of metric spaces into space forms, Geom. Dedicata, 87, 1-3, 285-307 (2001) · Zbl 1024.54013 · doi:10.1023/A:1012093209450
[24] Mackay, JM; Tyson, JT, Conformal dimension, University Lecture Series (2010), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1201.30002
[25] Murtagh, F.; Downs, G.; Contreras, P., Hierarchical clustering of massive, high dimensional data sets by exploiting ultrametric embedding, SIAM J. Sci. Comput., 30, 2, 707-730 (2008) · Zbl 1157.62041 · doi:10.1137/060676532
[26] Tuffley, C., Finite subset spaces of \(S^1\), Algebr. Geom. Topol., 2, 1119-1145 (2002) · Zbl 1015.55009 · doi:10.2140/agt.2002.2.1119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.