×

Congruence and metaplectic covariance: rational biquadratic reciprocity and quantum entanglement. (English) Zbl 1488.11171

Summary: The purpose of the paper is to elucidate the cyclotomographic applications of the coadjoint orbit methodology to the Legendre-Hilbert-Artin symbolic tower of class field theory in the sense of the theories of Chevalley, Hasse, Weil and Witt. The Witt arithmetics concludes with the law of rational biquadratic reciprocity and quantum entanglement.

MSC:

11R37 Class field theory
81P40 Quantum coherence, entanglement, quantum correlations

References:

[1] D.M.S. Bagguley, Editor, Pulsed Magnetic Resonance: NMR, ESR, and Optics. A recognition of E.L. Hahn. Oxford University Press, Oxford, New York, Toronto 1992
[2] O. Baumgart, The Quadratic Reciprocity Law: A Collection of Classical Proofs. Birkhäuser and Springer, Cham, Heidelberg, New York, Dordrecht, London 2015 · Zbl 1338.11003
[3] K. Burde, Ein rationales biquadratisches Reziprozitätsgesetz. J. Reine und Angew. Math. 235, 175-184 (1969) · Zbl 0169.36902
[4] J.C. Carr, T.J. Carroll, Magnetic Resonance Angiography, Principles and Applications. Springer New York, Dor-drecht, Heidelberg, London 2012
[5] C. Chevalley, The Algebraic Theory of Spinors and Clifford Algebras. Collected Works, Volume 2, Springer-Verlag, Berlin, Heidelberg, New York 1997 · Zbl 0899.01032
[6] N. Childress, Class Field Theory. Springer-Verlag, Berlin, Heidelberg, New York 2009 · Zbl 1165.11001
[7] C.W. Curtis, Pioneers of Representation Theory: Frobenius, Burnside, Schur, and Brauer. American Mathematical Society, Providence, Rhode Island 1999 · Zbl 0939.01007
[8] J.A. Dieudonné, Review of The Algebraic Theory of Spinors by C. Chevalley. Bull. Amer. Math. Soc. 60, 408-413 (1954)
[9] J. Franchi, Y. Le Jan, Hyperbolic Dynamics and Brownian Motion: An Introduction. Oxford University Press, Oxford, New York 2012 · Zbl 1257.37001
[10] L.J. Goldstein, Analytic Number Theory. Prentice Hall, Englewood Cliffs, New Jersey 1971 · Zbl 0226.12001
[11] G. Gras, Class Field Theory: From Theory to Practice. Springer-Verlag, Berlin, Heidelberg, NewYork 2005
[12] V.W. Guillemin, Symplectic spinors and partial differential equations. In: Géomeétrie Symplectique et Physique Mathématique, pp. 217-252, Centre National de la Recherche Scientifique, Paris 1975 · Zbl 0341.58014
[13] V.W. Guillemin, S. Sternberg, Supersymmetry and Equivariant de Rham Theory. Springer-Verlag, Berlin, Heidel-berg, New York 1999 · Zbl 0934.55007
[14] D. Harari, Galois Cohomology and Class Field Theory. Springer Nature, Cham, Switzerland 2020 · Zbl 1466.11086
[15] R. Howe, On the role of the Heisenberg group in harmonic analysis. Bull. Amer. Math. Soc. (New Series), Vol. 3, 821-843 (1980) · Zbl 0442.43002
[16] R. Howe, Quantum mechanics and partial differential equations. J. Funct. Anal. 38, 188-254 (1980) · Zbl 0449.35002
[17] R. Howe, The oscillator semigroup. In: The Mathematical Heritage of Hermann Weyl. R.O. Wells, Jr., Editor, Proceedings of Symposia in Pure Mathematics, Vol. 48, pp. 61-132, American Mathematical Society, Providence, Rhode Island 1988 · Zbl 0687.47034
[18] H. Johansen-Berg, T.E.J. Behrens, Editors, Diffusion MRI: From Quantitative Measurement to In vivo Neu-roanatomy. Elsevier, Academic Press, Amsterdam, Boston, Heidelberg 2009
[19] D.K. Jones, Editor, Diffusion MRI: Theory, Methods, and Applications. Oxford University Press, Oxford, New York 2010
[20] B. Kostant, Symplectic spinors. In: Istituto Nazionale di Alta Matematica Roma, Symposia Mathematica, Volume XIV, pp. 139-152, Academic Press, London, New York 1974 · Zbl 0321.58015
[21] S. Lang, Introduction to Algebraic and Abelian Functions. Second edition, Springer-Verlag, New York, Heidel-berg, Berlin 1987
[22] G. Lion, M. Vergne, The Weil Representation, Maslov Index and Theta Series. Birkhäuser Verlag, Boston, Basel, Stuttgart 1980 · Zbl 0444.22005
[23] A. Merkurjev, On the norm residue symbol of degree 2. Sovjet Math. Doklady 24, 546-551 (1981) · Zbl 0496.16020
[24] P. Morandi, Field and Galois Theory. Springer-Verlag, New York, Berlin, Heidelberg 1996 · Zbl 0865.12001
[25] S. Mori, Introduction to Diffusion Tensor Imaging. Elsevier, Amsterdam, Boston, Heidelberg 2007
[26] J. Neukirch, Class Field Theory. Springer-Verlag, Berlin, Heidelberg, New York 1986 · Zbl 0587.12001
[27] O.T. O’Meara, Introduction to Quadratic Forms. Springer-Verlag, Berlin, Heidelberg, NewYork 2000 · Zbl 1034.11003
[28] A.M. Ozorio de Almeida, Entanglement in phase space. In: Entanglement and Decoherence: Foundations and Modern Trends, A. Buchleitner, C. Viviescas, M. Tiersch, Editors, Lecture Notes in Physics 768, pp. 157-219, Springer-Verlag, Berlin, Heidelberg, New York 2010 · Zbl 1163.81004
[29] R.S. Pierce, Associative Algebras. Springer-Verlag, New York, Heidelberg, Berlin 1982 · Zbl 0497.16001
[30] C.R. Riehm, Introduction to Orthogonal, Symplectic and Unitary Representations of Finite Groups. American Mathematical Society, Providence, Rhode Island 2011 · Zbl 1262.20008
[31] H. Salzmann, D. Betten, T. Grundhöfer, H. Hähl, R. Löwen, M. Stroppel, Compact Projective Planes, With an Introduction to Octonion Geometry. Walter de Gruyter, Berlin, New York 1995
[32] W. Scharlau, Quadratic and Hermitian Forms. Springer-Verlag, Berlin, Heidelberg, New York 1985 · Zbl 0584.10010
[33] W.J. Schempp, Magnetic Resonance Imaging: Mathematical Foundations and Applications. Wiley-Liss, New York, Chichester, Weinheim 1998 · Zbl 0930.92015
[34] W.J. Schempp, Dynamic metaplectic spinor quantization: The projective correspondence for spectral dual pairs. Journal of Applied Mathematics and Computing 59, 545-584 (2019) · Zbl 1448.81388
[35] W.J. Schempp, Applications of metaplectic cohomology and global-local contact holonomy. Journal of Applied Mathematics and Computing 67 (2), 2021
[36] E.O. Stejskal, Use of spin echoes in a pulsed magnetic-field gradient to study non-isotropic, restricted diffusion and flow. J. Chem. Phys. 43, 3597-3603 (1965)
[37] E.O. Stejskal, J.E. Tanner, Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. J. Chem. Phys. 42, 288-292 (1965)
[38] A. Weil, Basic Number Theory. Third edition, Springer-Verlag, Berlin, Heidelberg, New York 1974 · Zbl 0326.12001
[39] A. Weil, Sur certains groupes d’opérateurs unitaires. Acta Math. 111, 143-211 (1964); · Zbl 0203.03305
[40] Collected Papers, Vol. III, pp. 1-69, Springer-Verlag, New York, Heidelberg, Berlin 1979 · Zbl 0402.01011
[41] A. Weil, Sur la formule de Siegel dans la théorie des groupes classiques. Acta Math. 113, 1-87 (1965); Collected Papers, Vol. III, pp. 71-157, Springer-Verlag, New York, Heidelberg, Berlin 1979 · Zbl 0161.02304
[42] E-mail address: schempp@mathematik.uni-siegen.de
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.