×

A quotient of the Lubin-Tate tower. (English) Zbl 1434.11110

Summary: In this article we show that the quotient \(\mathcal{M}_\infty/B(\mathbb{Q}_p)\) of the Lubin-Tate space at infinite level \(\mathcal{M}_\infty\) by the Borel subgroup of upper triangular matrices \(B(\mathbb{Q}_p)\subset \operatorname{GL}_2(\mathbb{Q}_p)\) exists as a perfectoid space. As an application we show that Scholze’s functor \(H_{\text{é}\text{t}}^i(\mathbb{P}_{\mathbb{C}_{p}}^{1},\mathcal{F}_\pi)\) is concentrated in degree one whenever \(\pi\) is an irreducible principal series representation or a twist of the Steinberg representation of \(\operatorname{GL}_2(\mathbb{Q}_p)\).

MSC:

11F77 Automorphic forms and their relations with perfectoid spaces
14G45 Perfectoid spaces and mixed characteristic
11S37 Langlands-Weil conjectures, nonabelian class field theory
14G22 Rigid analytic geometry

References:

[1] M.Artin, A.Grothendieck and J.-L.Verdier, Theorie de Topos et Cohomologie Etale des Schemas I, II, III, Lecture Notes in Mathematics, 269, 270, 305 (Springer, New York, 1971). · Zbl 0234.00007
[2] C.Breuil, ‘The emerging p-adic Langlands programme’, inProceedings of the International Congress of Mathematicians, Vol. II (Hindustan Book Agency, New Delhi, 2010), 203-230. · Zbl 1368.11123
[3] A.Caraiani, M.Emerton, T.Gee, D.Geraghty, V.Paškūnas and S. W.Shin, ‘Patching and the <![CDATA \([p]]\)>-adic local Langlands program for <![CDATA \([\text{GL}(2,\mathbb{Q}_p)]]\)>’, Preprint, 2016, arXiv:1609.06902v1. · Zbl 1403.11073
[4] A.Caraiani and P.Scholze, ‘On the generic part of the cohomology of compact unitary Shimura varieties’, Ann. of Math. (2) to appear, Preprint, 2015, arXiv:1511.02418v1. · Zbl 1401.11108
[5] T.Gee and M.Kisin, ‘The Breuil-Mézard conjecture for potentially Barsotti-Tate representations’, Forum Math. Pi2 (2014), e1, 56.10.1017/fmp.2014.1 · Zbl 1408.11033
[6] D.Hansen, ‘Quotients of adic spaces’, Math. Res. Lett., (2016) to appear, http://www.math.columbia.edu/∼hansen/overcon.pdf.
[7] R.Huber, ‘A generalization of formal schemes and rigid analytic varieties’, Math. Z.217(4) (1994), 513-551.10.1007/BF02571959 · Zbl 0814.14024 · doi:10.1007/BF02571959
[8] R.Huber, Étale Cohomology of Rigid Analytic Varieties and Adic Spaces, Aspects of Mathematics, E30 (Friedr. Vieweg & Sohn, Braunschweig, 1996).10.1007/978-3-663-09991-8 · Zbl 0868.14010 · doi:10.1007/978-3-663-09991-8
[9] J.de Jong and M.van der Put, ‘Étale cohomology of rigid analytic spaces’, Doc. Math.1(01) (1996), 1-56 (electronic). · Zbl 0922.14012
[10] M.Rapoport and Th.Zink, Period Spaces for p-divisible Groups, Annals of Mathematics Studies, 141 (Princeton University Press, Princeton, NJ, 1996). · Zbl 0873.14039
[11] P.Scholze, ‘On torsion in the cohomology of locally symmetric spaces’, Ann. of Math. (2)182(3) (2015), 945-1066.10.4007/annals.2015.182.3.3 · Zbl 1345.14031 · doi:10.4007/annals.2015.182.3.3
[12] P.Scholze, ‘p-adic Hodge theory for rigid-analytic varieties’, Forum Math. Pi1 (2013), e1, 77 pp.10.1017/fmp.2013.1 · Zbl 1297.14023
[13] P.Scholze, ‘On the p-adic cohomology of the Lubin-Tate tower’, Preprint, 2015, arXiv:1506.04022. · Zbl 1419.14031
[14] P.Scholze and J.Weinstein, ‘Moduli of p-divisible groups’, Camb. J. Math.1(2) (2013), 145-237.10.4310/CJM.2013.v1.n2.a1 · Zbl 1349.14149
[15] J.Weinstein, ‘Peter Scholze’s lectures on <![CDATA \([p]]\)>-adic geometry’, (2015), http://math.bu.edu/people/jsweinst/Math274/ScholzeLectures.pdf.
[16] J.Weinstein, ‘Semistable models for modular curves of arbitrary level’, Invent. Math.205(2) (2016), 459-526.10.1007/s00222-015-0641-5 · Zbl 1357.14034 · doi:10.1007/s00222-015-0641-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.