×

On maximal tamely ramified pro-2-extensions over the cyclotomic \(\mathbb Z_2\)-extension of an imaginary quadratic field. (English) Zbl 1263.11097

Y. Mizusawa [J. Théor. Nombres Bordx. 22, No. 1, 115–138 (2010; Zbl 1221.11215)] computed a pro-\(2\) presentation of the Galois group of the maximal unramified pro-\(2\)-extension of the cyclotomic \(\mathbb Z_2\)-extension of certain complex quadratic number fields. In this article it is shown that the same methods allow to discuss some maximal tamely ramified pro-\(2\)-extensions. The author’s main result is the following: let \(p \equiv \pm 3 \bmod 8\) and \(q \equiv -p \bmod 8\) be prime numbers and put \(S = \{q\}\). Let \(k = \mathbb Q(\sqrt{-p}\,)\), let \(k_\infty\) be the cyclotomic \(\mathbb Z_2\)-extension of \(k\), and \(L_S^\infty\) the maximal pro-\(2\)-extension of \(k_\infty\) unramified outside of \(S\). Then the Galois group \(G\) of \(L_S^\infty/k_\infty\) has rank \(2\), its abelianization is isomorphic to \(\mathbb Z_2 \oplus \mathbb Z/2\mathbb Z\) as a \(\mathbb Z_2\)-module, and \(G\) has the presentation \(G = \langle a, b| [a,b]a^2 \rangle\), where \([a,b] = a^{-1}b^{-1}ab\) is the commutator of \(a\) and \(b\).

MSC:

11R23 Iwasawa theory
11R18 Cyclotomic extensions

Citations:

Zbl 1221.11215

References:

[1] B. Ferrero: The cyclotomic \(\mathbf{Z}_{2}\)-extension of imaginary quadratic fields , Amer. J. Math. 102 (1980), 447–459. JSTOR: · Zbl 0463.12002 · doi:10.2307/2374108
[2] T. Fukuda: Remarks on \(\mathbf{Z}_{p}\)-extensions of number fields , Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), 264–266. · Zbl 0823.11064 · doi:10.3792/pjaa.70.264
[3] G. Gras: Class Field Theory, Springer Monographs in Mathematics, From theory to practice; Translated from the French manuscript by Henri Cohen, Springer, Berlin, 2003. · Zbl 1019.11032
[4] Y. Kida: On cyclotomic \(\mathbf{Z}_{2}\)-extensions of imaginary quadratic fields , Tôhoku Math. J. (2) 31 (1979), 91–96. · Zbl 0408.12006 · doi:10.2748/tmj/1178229880
[5] H. Kisilevsky: Number fields with class number congruent to \(4 \bmod 8\) and Hilbert’s theorem \(94\) , J. Number Theory 8 (1976), 271–279. · Zbl 0334.12019 · doi:10.1016/0022-314X(76)90004-4
[6] Y. Mizusawa: On the maximal unramified pro-2-extension of \(\mathbb{Z}_{2}\)-extensions of certain real quadratic fields II, Acta Arith. 119 (2005), 93–107. · Zbl 1151.11055 · doi:10.4064/aa119-1-7
[7] Y. Mizusawa: On the maximal unramified pro-2-extension over the cyclotomic \(\mathbb{Z}_{2}\)-extension of an imaginary quadratic field , J. Théor. Nombres Bordeaux 22 (2010), 115–138. · Zbl 1221.11215 · doi:10.5802/jtnb.707
[8] J.-P. Serre: Cohomologie Galoisienne, With a contribution by Jean-Louis Verdier, Lecture Notes in Mathematics 5 , Troisieme edition, Springer, Berlin, 1965. · Zbl 0136.02801
[9] L.C. Washington: Introduction to Cyclotomic Fields, second edition, Graduate Texts in Mathematics 83 , Springer, New York, 1997. · Zbl 0966.11047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.