×

Maximal varieties and the local Langlands correspondence for \(\mathrm{GL}(n)\). (English) Zbl 1336.11074

Let \(n\geq1\) be an integer, and \(F\) be a non-Archimedean local field whose ring of integers is \(O_{F}\) and residue field \(\mathbb F_{q}\). Suppose \(H_0\) is a one-dimensional formal \(O_{F}\)-module over \(\mathbb F_{q}\) of height \(n\), and let \(M_{H_0,m}\) is the rigid analytic space parametrizing deformations of \(H_0\) together with a Drinfeld level \(m\) structure. See [M. Harris and R. Taylor, The geometry and cohomology of some simple Shimura varieties. With an appendix by Vladimir G. Berkovich. Princeton, NJ: Princeton University Press (2001; Zbl 1036.11027)]. The local Langlands correspondence and the Jacquet-Langlands correspondence for \(\mathrm{GL}_{n}(K)\) are both realized in the \(l\)-adic cohomology of the Lubin-Tate tower \(M_{H_0,\infty}=\lim M_{H_0,m}\). At the present, there is only a global proof for this fact in the literature. The second author in [Doc. Math., J. DMV 15, 981–1007 (2010; Zbl 1211.14027)] and [“Semistable model for modular curves of arbitrary level”, Preprint, arXiv:1010.4241] attempts to obtain a local proof the fact by constructing a nice model of \(M_{H_0,m}\). The original idea goes back to the work of T. Yoshida who was able to construct a formal model for \(M_{H_0,1}\) [Adv. Stud. Pure Math. 58, 361–402 (2010; Zbl 1257.11103)]. Yoshida showed by purely local methods that the local Langlands correspondence for depth zero supercuspidal representations of \(\mathrm{GL}_{n}(K)\) is realized in the cohomology of \(M_{H_0,1}\). The authors of the paper under review use this idea to generalize the results to large class of supercuspidals of positive depth. They work directly with \(M_{H_0,\infty}\) rather than any particular \(M_{H_0,m}\) of the tower (see [loc. cit. arXiv:1010.4241] and [P. Scholze and the second author, Camb. J. Math. 1, No. 2, 145–237 (2013; Zbl 1349.14149)]).

MSC:

11S37 Langlands-Weil conjectures, nonabelian class field theory
11G25 Varieties over finite and local fields
14G22 Rigid analytic geometry
11G18 Arithmetic aspects of modular and Shimura varieties

References:

[1] Th\'eorie des topos et cohomologie \'etale des sch\'emas. Tome 3, Lecture Notes in Mathematics, Vol. 305, vi+640 pp. (1973), Springer-Verlag, Berlin-New York
[2] Boyarchenko, Mitya, Deligne-{L}usztig constructions for unipotent and \(p\)-adic groups (2012) · Zbl 1278.91180
[3] Boyarchenko, Mitya; Drinfeld, Vladimir, A motivated introduction to character sheaves and the orbit method for unipotent groups in positive characteristic (2006) · Zbl 1334.20040
[4] Boyarchenko, Mitya; Weinstein, Jared, Geometric realization of special cases of local {L}anglands and {J}acquet-{L}anglands correspondences (2013) · Zbl 1336.11074
[5] de Jong, A. J., Crystalline {D}ieudonn\'e module theory via formal and rigid geometry, Inst. Hautes \'Etudes Sci. Publ. Math., 87, 175 pp. (1998)
[6] Deligne, P., Cohomologie \'etale, Lecture Notes in Mathematics, Vol. 569, iv+312pp pp. (1977), Springer-Verlag, Berlin-New York · Zbl 0345.00010
[7] Deligne, P., La conjecture de {W}eil {II}, Publ. Math. IHES, 52, 137\textendash 252 pp. (1980) · Zbl 0456.14014
[8] Deligne, P.; Lusztig, G., Representations of reductive groups over finite fields, Ann. of Math. (2), 103, 1, 103\textendash 161 pp. (1976) · Zbl 0336.20029
[9] [FarguesFontaine] Laurent Fargues and Jean-Marc Fontaine, Courbes et fibr\'es vectoriels en th\'eorie de Hodge \(p\)-adique, (2011). · Zbl 1470.14001
[10] Hopkins, M. J.; Gross, B. H., Equivariant vector bundles on the Lubin-Tate moduli space. Topology and representation theory, Evanston, IL, 1992, Contemp. Math. 158, 23\textendash 88 pp. (1994), Amer. Math. Soc., Providence, RI · Zbl 0807.14037 · doi:10.1090/conm/158/01453
[11] Harris, Michael; Taylor, Richard, The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies 151, viii+276 pp. (2001), Princeton University Press, Princeton, NJ · Zbl 1036.11027
[12] Henniart, Guy, Correspondance de Langlands-Kazhdan explicite dans le cas non ramifi\'e, Math. Nachr., 158, 7\textendash 26 pp. (1992) · Zbl 0777.11048 · doi:10.1002/mana.19921580102
[13] Henniart, Guy, Correspondance de {J}acquet-{L}anglands explicite. {I}. {L}e cas mod\'er\'e de degr\'e premier, S\'eminaire de {T}h\'eorie des {N}ombres, {P}aris, 1990\textendash 91, Progr. Math. 108, 85\textendash 114 pp. (1993), Birkh\"auser Boston, Boston, MA · Zbl 0961.11018
[14] Howe, Roger E., Tamely ramified supercuspidal representations of \({\rm Gl}_n\), Pacific J. Math., 73, 2, 437\textendash 460 pp. (1977) · Zbl 0404.22019
[15] Huber, R., A generalization of formal schemes and rigid analytic varieties, Math. Z., 217, 4, 513\textendash 551 pp. (1994) · Zbl 0814.14024 · doi:10.1007/BF02571959
[16] Kazhdan, David, On lifting. Lie group representations, II, College Park, Md., 1982/1983, Lecture Notes in Math. 1041, 209\textendash 249 pp. (1984), Springer, Berlin · Zbl 0538.20014 · doi:10.1007/BFb0073149
[17] Lubin, Jonathan; Tate, John, Formal complex multiplication in local fields, Ann. of Math. (2), 81, 380\textendash 387 pp. (1965) · Zbl 0128.26501
[18] Scholze, Peter, Perfectoid spaces, Publ. Math. Inst. Hautes \'Etudes Sci., 116, 245\textendash 313 pp. (2012) · Zbl 1263.14022 · doi:10.1007/s10240-012-0042-x
[19] Scholze, Peter; Weinstein, Jared, Moduli of \(p\)-divisible groups, Camb. J. Math., 1, 2, 145\textendash 237 pp. (2013) · Zbl 1349.14149
[20] Tate, J., Number theoretic background. Automorphic forms, representations and \(L\)-functions, Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977, Proc. Sympos. Pure Math., XXXIII, 3\textendash 26 pp. (1979), Amer. Math. Soc., Providence, R.I. · Zbl 0422.12007
[21] Weinstein, Jared, Good reduction of affinoids on the Lubin-Tate tower, Doc. Math., 15, 981\textendash 1007 pp. (2010) · Zbl 1211.14027
[22] Weinstein, Jared, Semistable models for modular curves of arbitrary level (2012) · Zbl 1357.14034
[23] Yoshida, Teruyoshi, On non-abelian Lubin-Tate theory via vanishing cycles. Algebraic and arithmetic structures of moduli spaces (Sapporo 2007), Adv. Stud. Pure Math. 58, 361\textendash 402 pp. (2010), Math. Soc. Japan, Tokyo · Zbl 1257.11103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.