×

Rigidity of bordered polyhedral surfaces. (English) Zbl 1510.52014

A Euclidean (or spherical or hyperbolic) polyhedral surface is meant to be a triangulated surface \((S,T)\) equipped with a metric \(d\) such that every triangle is isometric to a Euclidean (or spherical or hyperbolic) triangle. In the situation that \(S\) has a non-empty boundary, the main result gives characterizations of \(d\) up to isometry by its boundary values and several curvature quantities on the interior edges of \(T\). Corollaries concern results on cyclic polygons and on metrics associated to circle packings.

MSC:

52C25 Rigidity and flexibility of structures (aspects of discrete geometry)
51M04 Elementary problems in Euclidean geometries
51M09 Elementary problems in hyperbolic and elliptic geometries
52C26 Circle packings and discrete conformal geometry

Software:

CirclePack

References:

[1] Andreev, E.M.: On convex polyhedra in Lobachevskii spaces. Mat. Sb. (N.S.), 81(123):3 (1970), 445-478; Math. USSR-Sb. 10:3, 413-440 (1970) · Zbl 0194.23202
[2] Ba, T., Zhou, Z.: Rigidity of polyhedral surfaces with finite boundary components. Sciencepaper Online, http://www.paper.edu.cn/releasepaper/content/202104-130
[3] Bobenko, AI; Pinkall, U.; Springborn, BA, Discrete conformal maps and ideal hyperbolic polyhedra, Geom. Topol., 19, 2155-2215 (2015) · Zbl 1327.52040 · doi:10.2140/gt.2015.19.2155
[4] Bobenko, AI; Springborn, BA, Variational principles for circle patterns and Koebe’s theorem, Trans. Am. Math. Soc., 356, 659-689 (2004) · Zbl 1044.52009 · doi:10.1090/S0002-9947-03-03239-2
[5] Bobenko, AI; Springborn, BA, A discrete Laplace-Beltrami operator for simplicial surfaces, Discrete Comput. Geom., 38, 740-756 (2007) · Zbl 1144.65011 · doi:10.1007/s00454-007-9006-1
[6] Chow, B.; Luo, F., Combinatorial Ricci flows on surfaces, J. Differ. Geom., 63, 97-129 (2003) · Zbl 1070.53040
[7] Colin de Verdiere, Y., Un principe variationnel pour les empilements de cercles, Invent. Math., 104, 655-669 (1991) · Zbl 0745.52010 · doi:10.1007/BF01245096
[8] Connelly, R., Rigidity of packings, Eur. J. Combin., 29, 1862-1871 (2008) · Zbl 1156.52012 · doi:10.1016/j.ejc.2008.01.009
[9] Dai, J.; Gu, XD; Luo, F., Variational Principles for Discrete Surfaces (2008), Beijing: Higher Education Press, Beijing · Zbl 1160.52018
[10] Ge, H.; Hua, B.; Zhou, Z., Circle patterns on surfaces of finite topological type, Am. J. Math., 143, 1397-1430 (2021) · Zbl 1491.57013 · doi:10.1353/ajm.2021.0035
[11] Ge, H.; Hua, B.; Zhou, Z., Combinatorial Ricci flows for ideal circle patterns, Adv. Math., 383, 107698 (2021) · Zbl 1464.52014 · doi:10.1016/j.aim.2021.107698
[12] Glickenstein, D., Discrete conformal variations and scalar curvature on piecewise flat two and three dimensional manifolds, J. Differ. Geom., 87, 201-238 (2011) · Zbl 1243.52014
[13] Glickenstein, D.; Thomas, J., Duality structures and discrete conformal variations of piecewise constant curvature surfaces, Adv. Math., 320, 250-278 (2017) · Zbl 1379.52025 · doi:10.1016/j.aim.2017.08.043
[14] Gu, X.; Guo, R.; Luo, F.; Sun, J.; Wu, T., A discrete uniformization theorem for polyhedral surfaces II, J. Differ. Geom., 109, 431-466 (2018) · Zbl 1401.30048
[15] Gu, X.; Luo, F.; Sun, J.; Wu, T., A discrete uniformization theorem for polyhedral surfaces, J. Differ. Geom., 109, 223-256 (2018) · Zbl 1396.30008
[16] Guo, R., Local rigidity of inversive distance circle packing, Trans. Am. Math. Soc., 363, 4757-4776 (2011) · Zbl 1252.52019 · doi:10.1090/S0002-9947-2011-05239-6
[17] Guo, R.; Luo, F., Rigidity of polyhedral surfaces, II, Geom. Topol., 13, 4, 1265-1312 (2009) · Zbl 1160.52012 · doi:10.2140/gt.2009.13.1265
[18] Kourimska, H., Skuppin, L., Springborn, B.: A variational principle for cyclic polygons with prescribed edge lengths. Advances in Discrete Differential Geometry, pp. 177-195 (2016) · Zbl 1353.51013
[19] Leibon, G., Characterizing the Delaunay decompositions of compact hyperbolic surfaces, Geom. Topol., 6, 1, 361-391 (2002) · Zbl 1028.52014 · doi:10.2140/gt.2002.6.361
[20] Luo, F.: Rigidity of polyhedral surfaces. arXiv:math.GT/0612714 · Zbl 1239.52025
[21] Luo, F., Rigidity of polyhedral surfaces, III, Geom. Topol., 15, 2299-2319 (2011) · Zbl 1242.52027 · doi:10.2140/gt.2011.15.2299
[22] Luo, F., Rigidity of polyhedral surfaces, I, J. Differ. Geom., 96, 241-302 (2014) · Zbl 1386.52023
[23] Penner, RC, The decorated Teichmüller space of punctured surfaces, Commun. Math. Phys., 113, 299-339 (1987) · Zbl 0642.32012 · doi:10.1007/BF01223515
[24] Pinelis, I., Cyclic polygons with given edge lengths: existence and uniqueness, J. Geom., 82, 156-171 (2005) · Zbl 1080.52003 · doi:10.1007/s00022-005-1752-8
[25] Pinkall, U.; Polthier, K., Computing discrete minimal surfaces and their conjugates, Exp. Math., 2, 15-36 (1993) · Zbl 0799.53008 · doi:10.1080/10586458.1993.10504266
[26] Rivin, I., Euclidean structures on simplicial surfaces and hyperbolic volume, Ann. Math., 139, 553-580 (1994) · Zbl 0823.52009 · doi:10.2307/2118572
[27] Rivin, I., A characterization of ideal polyhedra in hyperbolic 3-space, Ann. Math., 143, 51-70 (1996) · Zbl 0874.52006 · doi:10.2307/2118652
[28] Schlenker, JM, Small deformations of polygons and polyhedra, Trans. Am. Math. Soc., 359, 2155-2189 (2007) · Zbl 1126.53041 · doi:10.1090/S0002-9947-06-04172-9
[29] Stanko, B., Zur Begründung der elementaren Inhaltslehre in der hyperbolishchen Ebene, Math. Ann., 180, 256-268 (1969) · Zbl 0159.21702 · doi:10.1007/BF01350742
[30] Stephenson, K., Introduction to Circle Packing: The Theory of Discrete Analytic Functions (2005), Cambridge: Cambridge University Press, Cambridge · Zbl 1074.52008
[31] Thurston, W.: Geometry and Topology of 3-Manifolds. Princeton Lecture Notes (1976)
[32] Xu, X., Rigidity of inversive distance circle packings revisited, Adv. Math., 332, 476-509 (2018) · Zbl 1394.52023 · doi:10.1016/j.aim.2018.05.026
[33] Xu, X., A new proof of Bowers-Stephenson conjecture, Math. Res. Lett., 28, 1283-1306 (2021) · Zbl 1478.52011 · doi:10.4310/MRL.2021.v28.n4.a15
[34] Xu, X.: Rigidity and deformation of discrete conformal structures on polyhedral surfaces. preprint arXiv:2103.05272
[35] Zeng, W.; Guo, R.; Luo, F.; Gu, X., Discrete heat kernel determines discrete Riemannian metric, Graph. Models, 74, 121-129 (2012) · doi:10.1016/j.gmod.2012.03.009
[36] Zhou, Z.: Circle patterns with obtuse exterior intersection angles. preprint arXiv:1703.01768
[37] Zhou, Z.: Producing circle patterns via configurations. preprint arXiv:2010.13076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.