×

Fundamental weight systems are quantum states. (English) Zbl 1538.81003

Summary: Weight systems on chord diagrams play a central role in knot theory and Chern-Simons theory; and more recently in stringy quantum gravity. We highlight that the noncommutative algebra of horizontal chord diagrams is canonically a star-algebra and ask which weight systems are positive with respect to this structure; hence, we ask: Which weight systems are quantum states, if horizontal chord diagrams are quantum observables? We observe that the fundamental \(\mathfrak{gl}(n)\)-weight systems on horizontal chord diagrams with \(N\) strands may be identified with the Cayley distance kernel at inverse temperature \(\beta = \mathrm{ln}(n)\) on the symmetric group on \(N\) elements. In contrast to related kernels like the Mallows kernel, the positivity of the Cayley distance kernel had remained open. We characterize its phases of indefinite, semi-definite and definite positivity, in dependence of the inverse temperature \(\beta\); and we prove that the Cayley distance kernel is positive (semi-)definite at \(\beta = \mathrm{ln}(n)\) for all \(n = 1,2,3, \ldots\). In particular, this proves that all fundamental \(\mathfrak{gl}(n)\)-weight systems are quantum states, and hence, so are all their convex combinations. We close with briefly recalling how, under our “Hypothesis H”, this result impacts on the identification of bound states of multiple M5-branes.

MSC:

81P16 Quantum state spaces, operational and probabilistic concepts
20C30 Representations of finite symmetric groups
20F65 Geometric group theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

References:

[1] Altschuler, D.; Freidel, L., Vassiliev knot invariants and Chern-Simons perturbation theory to all orders, Commun. Math. Phys., 187, 261-287 (1997) · Zbl 0949.57012 · doi:10.1007/s002200050136
[2] Babai, L., Spectra of Cayley graphs, J. Combin. Theor. B, 27, 180-189 (1979) · Zbl 0338.05110 · doi:10.1016/0095-8956(79)90079-0
[3] Balachandran, AP; Govindarajan, TR; de Queiroz, AR; Reyes-Lega, AF, Algebraic approach to entanglement and entropy, Phys. Rev. A, 88 (2013) · doi:10.1103/PhysRevA.88.022301
[4] Bar-Natan, D.: Perturbative aspects of the Chern-Simons topological quantum field theory. PhD thesis, Princeton University (1991). https://ncatlab.org/nlab/files/BarNatanPerturbativeCS91.pdf · Zbl 0738.53041
[5] Bar-Natan, D., On the Vassiliev knot invariants, Topology, 34, 2, 423-472 (1995) · Zbl 0898.57001 · doi:10.1016/0040-9383(95)93237-2
[6] Bar-Natan, D.: Vassiliev and Quantum Invariants of Braids. The interface of knots and physics (San Francisco, CA, 1995), 129-144, Proc. Sympos. Appl. Math., vol. 51. AMS Short Course Lecture Notes, Amer. Math. Soc., Providence, RI (1996). arXiv:q-alg/9607001 · Zbl 0841.57007
[7] Bar-Natan, D., Stoimenow, A.: The Fundamental Theorem of Vassiliev Invariants. In: Geometry and Physics, Lecture Notes in Pure & App. Math., vol. 184, Marcel Dekker Inc. (1996). arXiv:q-alg/9702009 · Zbl 0878.57004
[8] Bar-Natan, D.: The Cayley distance kernel following arXiv:2105.0287 by Corfield, Sati, and Schreiber, https://drorbn.net/AcademicPensieve/2021-05/nb/CayleyDistanceKernel.pdf
[9] Berkooz, M.; Narayan, P.; Simón, J., Chord diagrams, exact correlators in spin glasses and black hole bulk reconstruction, J. High Energy Phys., 08, 192 (2018) · Zbl 1396.83027 · doi:10.1007/JHEP08(2018)192
[10] Berkooz, M.; Isachenkov, M.; Narovlansky, V.; Torrents, G., Towards a full solution of the large N double-scaled SYK model, J. High Energy Phys., 03, 079 (2019) · Zbl 1414.81134 · doi:10.1007/JHEP03(2019)079
[11] Chmutov, S., Duzhin, S., Mostovoy, J.: Introduction to Vassiliev Knot Invariants. Cambridge University Press (2012). ISBN:9781139107846, arXiv:1103.5628 · Zbl 1245.57003
[12] Collari, C.: A note on weight systems which are quantum states. Can. Math. Bull. (2023) doi:10.4153/S0008439523000206arXiv:2210.05399 · Zbl 07761168
[13] Diaconis, P.: Group representations in Probability and Statistics. Institute of Mathematical Statistics Lecture Notes Monogr. Ser. 11 (1988). jstor:i397389, https://jdc.math.uwo.ca/M9140a-2012-summer/Diaconis.pdf · Zbl 0695.60012
[14] Diaconis, P., Hanlon, P.: Eigen Analysis for Some Examples of the Metropolis Algorithm. In: Richards, D. (ed.) Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications. Contemporary Mathematics 138, Amer. Math. Soc. (1992), doi:10.1090/conm/138 · Zbl 0789.05091
[15] Diaconis, P.; Shahshahani, M., Generating a random permutation with random transpositions, Z. Wahrscheinlichkeitsth. verw. Gebiete, 57, 159-179 (1981) · Zbl 0485.60006 · doi:10.1007/BF00535487
[16] Drutu, C., Kapovich, M.: Geometric Group Theory. Colloquium Publications, vol. 63. Amer. Math. Soc. (2018) ISBN:978-1-4704-1104-6 · Zbl 1447.20001
[17] Fiorenza, D., Sati, H., Schreiber, U.: Twisted Cohomotopy implies M-theory anomaly cancellation on 8-manifolds. Commun. Math. Phys. 377, 1961-2025 (2020). doi:10.1007/s00220-020-03707-2. arXiv:1904.10207 · Zbl 1509.81573
[18] Fiorenza, D., Sati, H., Schreiber, U.: Twisted Cohomotopy implies M5 WZ term level quantization. Commun. Math. Phys. 384, 403-432 (2021). doi:10.1007/s00220-021-03951-0. arXiv:1906.07417 · Zbl 1464.81046
[19] Fligner, M.A., Verducci, J.S.: Distance based ranking models. J. R. Stat. Soc. B 48(3), 359-369 (1986) jstor:2345433 · Zbl 0658.62031
[20] Fligner, M.A., Verducci, J.S. (eds.): Probability Models and Statistical Analyses for Ranking Data, Lecture Notes in Statistics, vol. 80. Springer (1993). doi:10.1007/978-1-4612-2738-0 · Zbl 0754.00011
[21] Foster-Greenwood, B., Kriloff, C.: Spectra of Cayley graphs of complex reflection groups. J. Algebraic Combin. 44(1), 33-57 (2016). doi:10.1007/s10801-015-0652-8. arXiv:1502.07392 · Zbl 1342.05084
[22] Fulton, W., Young Tableaux, with Applications to Representation Theory and Geometry (1997), Cambridge: Cambridge University Press, Cambridge · Zbl 0878.14034 · doi:10.1017/CBO9780511626241
[23] Fulton, W.; Harris, J., Representation Theory: A First Course (1991), Berlin: Springer, Berlin · Zbl 0744.22001 · doi:10.1007/978-1-4612-0979-9
[24] Gnedin, A.; Gorin, V.; Kerov, S., Block characters of the symmetric groups, J. Algebraic Comb., 38, 1, 79-101 (2013) · Zbl 1278.20008 · doi:10.1007/s10801-012-0394-9
[25] Hofmann, T.; Schölkopf, B.; Smola, AJ, Kernel methods in machine learning, Ann. Stat., 36, 3, 1171-1220 (2008) · Zbl 1151.30007 · doi:10.1214/009053607000000677
[26] Hwang, S.-G.: Cauchy’s interlace theorem for eigenvalues of Hermitian matrices. Am. Math. Mon. 111(2), 157-159 (2004) jstor:4145217 · Zbl 1050.15008
[27] Jahn, A.; Eisert, J., Holographic tensor network models and quantum error correction: a topical review, Quantum Sci. Technol., 6, 033002 (2021) · doi:10.1088/2058-9565/ac0293
[28] Jahn, A.; Gluza, M.; Pastawski, F.; Eisert, J., Majorana dimers and holographic quantum error-correcting code, Phys. Rev. Res, 1, 033079 (2019) · doi:10.1103/PhysRevResearch.1.033079
[29] Jiao, Y.; Vert, J-P, The Kendall and Mallows Kernels for permutations, IEEE Trans. Pattern Anal. Mach. Intell., 40, 7, 1755-1769 (2018) · doi:10.1109/TPAMI.2017.2719680
[30] Jucys, A.-A.: Factorization of Young projection operators for the symmetric group. Lietuvos Fizikos Rinkinys 11(1), 1-10 (1971). https://ncatlab.org/nlab/files/Jucys-1971.pdf
[31] Jucys, A-A, Symmetric polynomials and the center of the symmetric group ring, Rep. Math. Phys., 5, 1, 107-112 (1974) · Zbl 0288.20014 · doi:10.1016/0034-4877(74)90019-6
[32] Kadison, R.V., Ringrose, J.R.: Fundamentals of the theory of operator algebras I: Elementary Theory. Graduate Studies in Mathematics, vol. 15. Amer. Math. Soc. (1997). ISBN:978-0-8218-0819-1 · Zbl 0888.46039
[33] Kaski, P.: Eigenvectors and spectra of Cayley graphs, Lecture notes, Postgraduate Course in Theoretical Computer Science, Helsinki (2002). www.tcs.hut.fi/Studies/T-79.300/2002S/esitelmat/kaski_paper_020506.pdf
[34] Kohno, T., Loop spaces of configuration spaces and finite type invariants, Geom. Topol. Monogr., 4, 143-160 (2002) · Zbl 1043.57004 · doi:10.2140/gtm.2002.4.143
[35] Kontsevich, M.: Vassiliev’s knot invariants. Adv. Sov. Math. 16, 2 (1993). http://pagesperso.ihes.fr/ maxim/TEXTS/VassilievKnot.pdf · Zbl 0839.57006
[36] James, GD, The Representation Theory of the Symmetric Groups. Lecture Notes in Mathematics (1978), Berlin: Springer, Berlin · Zbl 0393.20009
[37] Landsman, K., Foundations of quantum theory: From classical concepts to Operator algebras, Springer Open (2017) · Zbl 1380.81028 · doi:10.1007/978-3-319-51777-3
[38] Lovász, L., Spectra of graphs with transitive groups, Period. Math. Hung., 6, 191-195 (1975) · Zbl 0395.05057 · doi:10.1007/BF02018821
[39] Mairal, J., Vert, J.-P.: Machine Learning with Kernel Methods. Lecture Notes (2017). http://members.cbio.mines-paristech.fr/ jvert/svn/kernelcourse/course/2021mva
[40] McNamara, S.: Twistor Inspired Methods in Perturbative Field Theory and Fuzzy Funnels, PhD thesis, Queen Mary, U. of London (2006). spire:1351861
[41] Meyer, P.-A.: Quantum Probability for Probabilists. Lecture Notes in Mathematics, vol. 1538. Springer (1995). doi:10.1007/BFb0084701 · Zbl 0877.60079
[42] Milnor, J.; Moore, J., On the structure of Hopf algebras, Ann. Math., 81, 211-264 (1965) · Zbl 0163.28202 · doi:10.2307/1970615
[43] McNamara, S.; Papageorgakis, C.; Ramgoolam, S.; Spence, B., Finite N effects on the collapse of fuzzy spheres, J. High Energy Phys., 0605, 060 (2006) · doi:10.1088/1126-6708/2006/05/060
[44] Murphy, GE, A new construction of Young’s seminormal representation of the symmetric groups, J. Algebra, 69, 2, 287-297 (1981) · Zbl 0455.20007 · doi:10.1016/0021-8693(81)90205-2
[45] Narovlansky, V.: Towards a Solution of Large N Double-Scaled SYK. Seminar Notes (2019). https://ncatlab.org/nlab/files/NarovlanskySYK19.pdf · Zbl 1414.81134
[46] Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke, B. (ed.) New Structures for Physics. Lecture Notes Phys., vol. 813. Springer, Berlin (2010). doi:10.1007/978-3-642-12821-9_4, arXiv:0908.3347 · Zbl 1217.18002
[47] Ramgoolam, S.; Spence, B.; Thomas, S., Resolving brane collapse with 1/N corrections in non-Abelian DBI, Nucl. Phys. B, 703, 236-276 (2004) · Zbl 1198.81161 · doi:10.1016/j.nuclphysb.2004.10.012
[48] Rockmore, D.; Kostelec, P.; Hordijk, W.; Stadler, PF, Fast Fourier transform for fitness landscapes, Appl. Comput. Harmon. Anal., 12, 57-76 (2002) · Zbl 1004.92028 · doi:10.1006/acha.2001.0346
[49] Sagan, B., The Symmetric Group (2001), Berlin: Springer, Berlin · Zbl 0964.05070 · doi:10.1007/978-1-4757-6804-6
[50] Sati, H., Framed M-branes, corners, and topological invariants, J. Math. Phys., 59 (2018) · Zbl 1482.81034 · doi:10.1063/1.5007185
[51] Sati, H., Schreiber, U.: Equivariant Cohomotopy implies orientifold tadpole cancellation. J. Geom. Phys. 156, 103775 (2020). doi:10.1016/j.geomphys.2020.103775. arXiv:1909.12277 · Zbl 1450.81055
[52] Sati, H., Schreiber, U.: Differential Cohomotopy implies intersecting brane observables via configuration spaces and chord diagrams. Adv. Theor. Math. Phys. 26(4), 957-1051 (2022). doi:10.4310/ATMP.2022.v26.n4.a4. arXiv:1912.10425 · Zbl 1520.83100
[53] Sati, H., Schreiber, U.: Twisted Cohomotopy implies M5-brane anomaly cancellation. Lett. Math. Phys. 111, 120 (2021). doi:10.1007/s11005-021-01452-8. arXiv:2002.07737 · Zbl 1517.81084
[54] Sati, H., Schreiber, U.: The character map in equivariant twistorial Cohomotopy implies the Green-Schwarz mechanism with heterotic M5-branes, arXiv:2011.06533
[55] Sati, H., Schreiber, U.: M/F-Theory as Mf-Theory. Rev. Math. Phys. (2023, in print) arXiv:2103.01877 · Zbl 1521.19003
[56] Stanley, R., Theory and application of plane partitions 2, Stud. Appl. Math., 50, 3, 259-279 (1971) · Zbl 0225.05012 · doi:10.1002/sapm1971503259
[57] Stanley, R.: Enumerative combinatorics, vol. 1. Cambridge University Press 2011 (1986). ISBN:9781107602625, http://www-math.mit.edu/ rstan/ec/ec1.pdf · Zbl 0608.05001
[58] Stanley, R.: Enumerative combinatorics, vol. 2. Cambridge University Press (1999). doi:10.1017/CBO9780511609589 · Zbl 0928.05001
[59] Sternberg, S.: Group Theory and Physics. Cambridge University Press, Cambridge (1994). ISBN:9780521558853 · Zbl 0816.53002
[60] Yan, H., Geodesic string condensation from symmetric tensor gauge theory: a unifying framework of holographic toy models, Phys. Rev. B, 102, 161119 (2020) · doi:10.1103/PhysRevB.102.161119
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.