×

Dynamical properties of chemical systems near Hopf bifurcation points. (English) Zbl 0976.34036

Summary: The authors numerically investigate local properties of dynamical systems close to a Hopf bifurcation instability. They focus on chemical systems and present an approach based on the theory of normal forms for determining numerical estimates of the limit cycle that branches off at the Hopf bifurcation point. For several numerically ill-conditioned examples taken from chemical kinetics, they compare these results with those obtained by using traditional approaches where an approximation of the limit cycle is restricted to the center subspace spanned by critical eigenvectors, and show that the inclusion of higher-order terms in the normal form expansion of the limit cycle provides a significant improvement of the limit cycle estimates. This result also provides an accurate initial estimate for subsequent numerical continuation of the limit cycle.

MSC:

34C23 Bifurcation theory for ordinary differential equations
92E20 Classical flows, reactions, etc. in chemistry
34C60 Qualitative investigation and simulation of ordinary differential equation models
37G15 Bifurcations of limit cycles and periodic orbits in dynamical systems
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms

Software:

LAPACK

References:

[1] B. P. Belousov,Sbornik referatov po Radiatsionnoi Meditsine(Medgiz, Moscow, 1959), p. 145, collections of abstracts on radiation medicine (in Russian).
[2] Zhabotinsky, Biophysics (Engl. Transl.) 9 pp 306– (1964)
[3] Zaikin, Nature (London) 255 pp 535– (1970)
[4] R. J. Field and M. Burger,Oscillation and Travelling Waves in Chemical Systems(Wiley-Interscience, New York, 1985).
[5] Zhabotinsky, Chaos 1 pp 379– (1991)
[6] Aguda, J. Am. Chem. Soc. 113 pp 7913– (1991)
[7] R. Larter, L. F. Olsen, C. G. Steinmetz, and T. Geist, inChaos in Chemistry and Bicohemistry, edited by R. J. Field and L. Györgyi (World Scientific, Singapore, 1993), pp. 175–224.
[8] Hocker, Biophys. Chem. 51 pp 21– (1994)
[9] Schreiber, Chaos 9 pp 43– (1999)
[10] Hopf, Ber. Math.-Phys. Kl. Sächs Acad. Wiss. Leipzig 94 pp 1– (1942)
[11] J. E. Marsden and M. McCracken,The Hopf Bifurcation and Its Applications(Springer-Verlag, New York, 1976). · Zbl 0346.58007
[12] B. D. Hassard, N. D. Kazarinoff, and Y.-H. Wan,Theory and Applications of Hopf Bifurcation, No. 41 in London Mathematical Society Lecture Note Series(Cambridge University Press, Cambridge, 1981). · Zbl 0474.34002
[13] Y. Kuramoto,Chemical Oscillations, Waves, and Turbulence(Springer-Verlag, Berlin, 1984). · Zbl 0558.76051
[14] J. Guckenheimer and P. J. Holmes,Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields(Springer-Verlag, New York, 1983). · Zbl 0515.34001
[15] J. Carr,Applications of Center Manifold Theory(Springer-Verlag, New York, 1981). · Zbl 0464.58001
[16] Y. A. Kuznetsov,Elements of Applied Bifurcation Theory(Springer-Verlag, New York, 1995). · Zbl 0829.58029
[17] M. Kub{ı\'}ček and M. Marek,Computational Methods in Bifurcation Theory and Dissipative Structures(Springer-Verlag, New York, 1983).
[18] M. Marek and I. Schreiber,Chaotic Behavior of Deterministic Dissipative Systems(Cambridge University Press, Cambridge, 1995).
[19] Ipsen, Chaos 8 pp 834– (1998)
[20] T. Kato,Perturbation Theory for Linear Operators(Springer-Verlag, Berlin, 1966). · Zbl 0148.12601
[21] W.-J. Beyn, inNonlinear Partial Differential Equations and Dynamical Systems, Vol. 1 ofAdvances in Numerical Analysis, edited by W. Light (Clarendon, Oxford, 1991), Chap. 5, pp. 175–236.
[22] Holodniok, Appl. Math. Comput. 15 pp 261– (1984)
[23] Handbook of Mathematical Functions, edited by M. Abramowitz and I. A. Stegun (Dover, New York, 1964).
[24] Doedel, Int. J. Bifurcation Chaos Appl. Sci. Eng. 1 pp 493– (1991)
[25] E. Anderson et al., LAPACKUsers’s Guide, 2nd ed. (SIAM, Philadelphia, 1995).
[26] A. C. Hindmarsh, inScientific Computing, edited by R. S. Stepleman et al. (North-Holland, Amsterdam, 1983), pp. 55–64.
[27] Caplan, Nature (London) 245 pp 364– (1973)
[28] Naparstek, Biochim. Biophys. Acta 323 pp 643– (1973)
[29] Takens, Institut des Hautes Études Scientifiques 43 pp 47– (1974)
[30] Luo, J. Am. Chem. Soc. 113 pp 1518– (1991)
[31] Olsen, Nature (London) 267 pp 177– (1977)
[32] G. Iooss and D. D. Joseph,Elementary Stability and Bifurcation Theory, 2nd ed. (Springer-Verlag, New York, 1980, 1990). · Zbl 0443.34001
[33] Lefever, J. Chem. Phys. 48 pp 263– (1968)
[34] Kuramoto, Prog. Theor. Phys. 54 pp 687– (1975)
[35] Wittenberg, Physica D 100 pp 1– (1997)
[36] Hynne, J. Chem. Phys. 92 pp 1747– (1990)
[37] Mihaliuk, J. Phys. Chem. A 103 pp 8246– (1999)
[38] M. Ipsen, Technical report, UNI-C (unpublished).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.