×

Mathematical modeling of an immune checkpoint inhibitor and its synergy with an immunostimulant. (English) Zbl 1464.92132

Summary: Immune checkpoint inhibitors (ICIs) are a novel cancer therapy that may induce tumor regression across multiple types of cancer. There has recently been interest in combining the ICIs with other forms of treatments, as not all patients benefit from monotherapy. We propose a mathematical model consisting of ordinary differential equations to investigate the combination treatments of the ICI avelumab and the immunostimulant NHS-muIL12. We validated the model using the average tumor volume curves provided in [C. Xu et al., “Combination therapy with NHS-muIL12 and avelumab (anti-PD-L1) enhances antitumor efficacy in preclinical cancer models”, Clinical Cancer Res. 23, No. 19, 5869–5880 (2017; doi:10.1158/1078-0432.CCR-17-0483)]. We initially analyzed a simple generic model without the use of any drug, which provided us with mathematical conditions for local stability for both the tumorous and tumor-free equilibrium. This enabled us to adapt these conditions for special cases of the model. Additionally, we conducted systematic mathematical analysis for the case that both drugs are applied continuously. Numerical simulations suggest that the two drugs act synergistically, such that, compared to monotherapy, only about one-third the dose of both drugs is required in combination for tumor control.

MSC:

92C50 Medical applications (general)
34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations
35B10 Periodic solutions to PDEs
Full Text: DOI

References:

[1] H. O. Alsaab, S. Sau, R. Alzhrani, K. Tatiparti, K. Bhise, S. K. Kashaw and A. K. Iyer, PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome, Frontiers in Pharmacology, 8 (2017), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5572324/.
[2] R. H. Blair, D. L. Trichler and D. P. Gaille, Mathematical and statistical modeling in cancer systems biology, Frontiers in Physiology, 3 (2012), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385354/.
[3] R. H. Byrd; J. C. Gilbert; J. Nocedal, A trust region method based on interior point techniques for nonlinear programming, Mathematical Programming, 89, 149-185 (2000) · Zbl 1033.90152 · doi:10.1007/PL00011391
[4] K. Chin, V. K. Chand and D. S. A. Nuyten, Avelumab: Clinical trial innovation and collaboration to advance anti-PD-L1 immunotherapy, Annals of Oncology: Official Journal of the European Society for Medical Oncology, 28 (2017), 1658-1666, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5834034/.
[5] S. Halle, K. A. Keyser, F. R. Stahl, A. Busche, A. Marquardt, X. Zheng, M. Galla, V. Heissmeyer, K. Heller, J. Boelter, K. Wagner, Y. Bischoff, R. Martens, A. Braun, K. Werth, A. Uvarovskii, H. Kempf, M. Meyer-Hermann, R. Arens, M. Kremer, G. Sutter, M. Messerle and Reinhold Förster, In vivo killing capacity of cytotoxic T Cells is limited and involves dynamic interactions and T Cell cooperativity, \emphImmunity, 44 (2016), 233-245, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846978/.
[6] L. F. Han, S. Eikenberry, C. H. He, L. Johnson, M. C. Preul, E. J. Kostelich and Y. Kuang, Patient-specific parameter estimates of glioblastoma multiforme growth dynamics from a model with explicit birth and death rates, Mathematical Biosciences and Engineering, 16 (2019), 5307-5323, https://www.aimspress.com/fileOther/PDF/MBE/mbe-16-05-265.pdf. · Zbl 1497.92054
[7] V. R. Juneja, K. A. McGuire, R. T. Manguso, M. W. LaFleur, N. Collins, W. N. Haining, Gordon J. Freeman and Arlene H. Sharpe, PD-L1 on tumor cells is sufficient for immune evasion in immunogenic tumors and inhibits CD8 T cell cytotoxicity, The Journal of Experimental Medicine, 214 (2017), 895-904, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5379970/.
[8] J. Kang, S. Demaria and S. Formenti, Current clinical trials testing the combination of immunotherapy with radiotherapy, Journal for Immunotherapy of Cancer, 4 (2016), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5028964/.
[9] V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bulletin of Mathematical Biology, 56 (1994), 295-321, https://www.sciencedirect.com/science/article/pii/S0092824005802605. · Zbl 0789.92019
[10] V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor and A. S. Perelson, Nonlinear dynamics of immunogenic tumors: Parameter estimation and global bifurcation analysis, Bulletin of Mathematical Biology, 56 (1994), 295-321, https://www.sciencedirect.com/science/article/pii/S0092824005802605. · Zbl 0789.92019 · doi:10.1371/journal.pone.0178479
[11] X. L. Lai; A. Friedman, Combination therapy of cancer with cancer vaccine and immune checkpoint inhibitors: A mathematical model, PLoS ONE, 12, 1-24 (2017) · doi:10.1371/journal.pone.0178479
[12] T. List and D. Neri, Immunocytokines: A review of molecules in clinical development for cancer therapy, Clinical Pharmacology, 5 (2013), 29-45, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753206/. · Zbl 1448.92235 · doi:10.1080/17513758.2018.1454515
[13] X.-Y. Meng; N.-N. Qin; H.-F. Huo, Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species, Journal of Biological Dynamics, 12, 342-374 (2018) · Zbl 1448.92235 · doi:10.1080/17513758.2018.1454515
[14] E. Nikolopoulou, L. R. Johnson, D. Harris, J. D. Nagy, E. C. Stites and Y. Kuang, Tumour-immune dynamics with an immune checkpoint inhibitor, Letters in Biomathematics, 5 (2018), S137-S159.
[15] Z. P. Parra-Guillen, A. Janda, P. Alzuguren, P. Berraondo, R. Hernandez-Alcoceba and I. F. Troconiz, Target-mediated disposition model describing the dynamics of IL12 and IFN \(\gamma\) after administration of a mifepristone-inducible adenoviral vector for IL-12 expression in mice, AAPS Journal, 15 (2013), 183-194, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3535095/.
[16] A. Radunskaya, R. Kim and T. Woods II, Mathematical modeling of tumor immune interactions: A closer look at the role of a PD-L1 inhibitor in cancer immunotherapy, Spora: A Journal of Biomathematics, 4 (2018), 25-41, https://ir.library.illinoisstate.edu/cgi/viewcontent.cgi?article=1022&context=spora.
[17] A. Rao and M. R. Patel, A review of avelumab in locally advanced and metastatic bladder cancer, Therapeutic Advances in Urology, 11 (2019), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6354303/. · Zbl 1300.92042
[18] E. A. Saparata and L. G. Pillis, A Comparison and catalog of intrinsic tumor growth models, Bulletin of Mathematical Biology, 76 (2014), 2010-2024, https://www.ncbi.nlm.nih.gov/pubmed/25081547. · Zbl 1300.92042
[19] R. Serre, S. Benzekry, L. Padovani, C. Meille, N. André, J. Ciccolini, F. Barlesi, X. Muracciole and D. Barbolosi, Mathematical modeling of cancer immunotherapy and its synergy with radiotherapy, Cancer Research, 76 (2016), 4931-4940, http://cancerres.aacrjournals.org/content/76/17/4931.
[20] L. Shi, S. Chen, L. Yang and Y. Li, The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies., Journal of Hematology and Oncology, 6 (2013), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851976/.
[21] S. Shi, J. Huang and Y. Kuang, Global dynamics in a tumor-immune model with an immune checkpoint inhibitor, DCDS-B, in review.
[22] S. Simon and N. Labarriere, PD-1 expression on tumor-specific T cells: Friend or foe for immunotherapy?, \emphOncoimmunology, 7 (2017), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5739549/.
[23] A. Stéphanou, P. Ballet and G. Powathil, Hybrid modelling in oncology: Success, challenges and hopes, (2019), https://arXiv.org/pdf/1901.05652.pdf. · Zbl 1339.92035
[24] A. Talkington and R. Durett, Estimating tumor growth rates in vivo, Bulletin of Mathematical Biology, 77 (2015), 1934-1954, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764475/. · Zbl 1339.92035 · doi:10.1007/s13238-017-0412-8
[25] S. G. Tan; K. F. Liu; Y. Chai; C. W.-H. Zhang; S. Gao; G. F. Gao; J. X. Qi, Distinct PD-L1 binding characteristics of therapeutic monoclonal antibody durvalumab, Protein and Cell, 9, 135-139 (2018) · doi:10.1007/s13238-017-0412-8
[26] J. Tang; J. X. Yu; V. M. Hubbard-Lucey; S. T. Neftelinov; J. P. Hodge; Y. Q. Lin, The clinical trial landscape for PD1/PDL1 immune checkpoint inhibitors, Nature Reviews Drug Discovery, 17, 854-855 (2018) · Zbl 1326.92045 · doi:10.1038/nrd.2018.210
[27] J. R. Wares; J. J. Crivelli; C. Yun; I. Choi; J. L. Gevertz; P. S. Kim, Treatment strategies for combining immunostimulatory oncolytic virus therapeutics with dendritic cell injections, Mathematical Biosciences and Engineering, 12, 1237-125 (2015) · Zbl 1326.92045 · doi:10.3934/mbe.2015.12.1237
[28] A. B. Warner and M. A. Postow, Combination controversies: Checkpoint inhibition alone or in combination for the treatment of melanoma?, \emphOncology, 32 (2018), 228-34, https://www.ncbi.nlm.nih.gov/pubmed/29847853.
[29] C. X. Xu, Y. P. Zhang, P. A. Rolfe, V. M. Hernández, W. Guzman, G. Kradjian, B. Marelli, G. Qin, J. Qi, H. Wang, H. Yu, R. Tighe, K. Lo, J. M. English, L. Radvanyi and Y. Lan, Combination therapy with NHS-muIL12 and avelumab (anti-PD-L1) enhances antitumor efficacy in preclinical cancer models, Clinical Cancer Research, 23 (2017), 5869-5880, http://clincancerres.aacrjournals.org/content/23/19/5869.
[30] Y. Y. Yan, A. B. Kumar, H. Finnes, S. N. Markovic, S. Park, R. S. Dronca and H. Dong, Combining immune checkpoint inhibitors with conventional cancer therapy, Frontiers in Immunology, 9 (2018), https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072836/.
[31] D. Zamarin and M. A. Postow, Immune checkpoint modulation: Rational design of combination strategies, Pharmacology and Therapeutics, 150 (2015), 23-32, https://www.sciencedirect.com/science/article/pii/S0163725815000042.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.