×

IL-27 in combination with anti-PD-1 can be anti-cancer or pro-cancer. (English) Zbl 1530.92091

Summary: Interleukin-27 (IL-27) is known to play opposing roles in immunology. The present paper considers, specifically, the role IL-27 plays in cancer immunotherapy when combined with immune checkpoint inhibitor anti-PD-1. We first develop a mathematical model for this combination therapy, by a system of partial differential equations, and show agreement with experimental results in mice injected with melanoma cells. We then proceed to simulate tumor volume with IL-27 injection at a variable dose \(F\) and anti-PD-1 at a variable dose \(g\). We show that in some range of “small” values of \(g\), as \(f\) increases tumor volume decreases as long as \(f<F_c(g)\) and increases in a range where \(f>F_c(g)\), where \(F_c(g)\) is a monotone increasing function of \(g\). This demonstrates that IL-27 can be both anti-cancer and pro-cancer, depending on the ranges of both anti-PD-1 and IL-27.

MSC:

92C50 Medical applications (general)
35Q92 PDEs in connection with biology, chemistry and other natural sciences
Full Text: DOI

References:

[1] Agata, Y.; Kawasaki, A.; Nishimura, H.; Ishida, Y.; Tsubat, T.; Yagita, H., Expression of the pd-1 antigen on the surface of stimulated mouse t and b lymphocytes. Int. Immunol., 5, 765-772 (1996)
[2] Alshaker, H. A.; Matalka, K. Z., IFN-\( \gamma \), IL-17 and TGF-\( \beta\) involvement in shaping the tumor microenvironment: The significance of modulating such cytokines in treating malignant solid tumors. Cancer Cell Int., 23 (2011)
[3] Ando, M.; Takahashi, Y.; Yamashita, T.; Fujimoto, M.; Nishikawa, M.; Watanabe, Y.; Takakura, Y., Prevention of adverse events of interferon \(\gamma\) gene therapy by gene delivery of interferon-\( \gamma \)-heparin-binding domain fusion protein in mice. Mol. Ther. Methods Clin. Dev., 14023 (2014)
[4] Anon, PhosphoSitePlus/IL10(human) (2003), http://www.phosphosite.org/proteinAction.action?id=2473887&showAllSites=true. (Accessed 2003)
[5] Anon, PhosphoSitePlus/IL2(human) (2003), http://www.phosphosite.org/proteinAction.action?id=14691&showAllSites=true. (Accessed 2003)
[6] Boyman, O.; Cho, J. H.; Sprent, J., The role of interleukin-2 in memory CD8 cell differentiation. Adv. Exp. Med. Biol., 28-41 (2010)
[7] Brahmer, J. R.; Drake, C. G.; Wollner, I.; Powderly, J. D.; Picus, J.; Sharfman, W. H., Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol., 3167-3175 (2010)
[8] Breward, C. J.W.; Byrne, H. M.; Lewis, C. E., Modeling the interactions between tumor cells and a blood vessel in a microenvironment within a vascular tumor. Eur. J. Appl. Math., 529-556 (2001) · Zbl 0987.92019
[9] Brewer, G.; Saccani, S.; Sarkar, S.; Lewis, A.; Pestka, S., Increased interleukin-10 mRNA stability in melanoma cells is associated with decreased levels of A+U-rich element binding factor AUK1. J. Interferon Cytokine Res., 553-564 (2003)
[10] Brito-Melo, G. E.; Peruhype-Magalhaes, V.; Teixeira-Carvalho, A.; Barbosa-Stancioli, E. F.; Carneiro-Proietti, A. B.; Catalan-Soares, B., IL-10 produced by CD \(4{}^+\) and CD \(8{}^+\) T cells emerge as a putative immunoregulatory mechanism to counterbalance the monocyte-derived TNF-alpha and guarantee asymptomatic clinical status during chronic HTLV-I infection. Clin. Exp. Immunol., 1, 35-44 (2007)
[11] Carbotti, G.; Barisione, G.; Airoldi, I.; Mezzanzanica, D.; Bagnoli, M.; Ferrero, S.; Petretto, A.; Fabbi, M.; Ferrini, S., IL-27 induces the expression of IDO and PD-L1 in human cancer cells. Oncotarget, 41, 43267-43280 (2015)
[12] Cheng, X.; Veverka, V.; Radhakrishnan, A.; Waters, L. C.; Muskett, F. W.; Morgan, S. H., Human Pd-L1/B7-H1/Cd274 Protein (2002), Sino Biological Inc., http://www.sinobiological.com/PD-L1-B7-H1-CD274-Protein-g-533.html. (Accessed 2002)
[13] Cheng, X.; Veverka, V.; Radhakrishnan, A.; Waters, L. C.; Muskett, F. W.; Morgan, S. H., Structure and interactions of the human programmed cell death 1 receptor. J. Biol. Chem., 11771-11785 (2013)
[14] Cocco, C.; Giuliani, N.; Di Carlo, E.; Ognio, E.; Storti, P.; Abeltino, M.; Sorrentino, C.; Ponzoni, M.; Ribatti, D.; Airoldi, I., Interleukin-27 acts as multifunctional antitumor agent in multiple myeloma. Clin. Cancer Res., 4188-4197 (2010)
[15] Curtsinger, J. M.; Agarwal, P.; Lins, D. C.; Mescher, M. F., Autocrine IFN-\( \gamma\) promotes naive CD8 T cell differentiation and synergizes with IFN-\( \alpha\) to stimulate strong function. J. Immunol., 659-668 (2012)
[16] D’Acunto, B.
[17] Eubank, T.; Roberts, R. D.; Khan, M.; Curry, J. M.; Nuovo, G. J.; Kuppusamy, P.; Marsh, C. B., GM-CSF inhibits breast cancer growth and metastases by invoking an anti-angiogenic program in tumor-educated macrophages. Cancer Res., 2133-2140 (2009)
[18] Fabbi, M.; Carbotti, G.; Ferrini, S., Dual roles of IL-27 in cancer biology and immunotherapy. Mediators Inflamm. (2017)
[19] Farrar, M. A.; Schreiber, R. D., The molecular cell biology of interferon-\( \gamma\) and its receptor. Annu. ReI. Immunol, 571-611 (1993)
[20] Friedman, A.; Lai, X., Combination therapy for cancer with oncolytic virus and checkpoint inhibitor: A mathematical model. PLoS One, 2 (2018)
[21] Friedman, A.; Siewe, N., Chronic hepatitis B virus and liver fibrosis: A mathematical model. PLoS One, 4 (2018)
[22] Friedman, A.; Turner, J.; Szomolay, B., A model on the influence of age on immunity to infection with Mycobacterium tuberculosis. Exp. Gerontol., 275-285 (2008)
[23] Galve-de Rochemonteix, B.; Nicod, L. P.; Dayer, J. M., Tumor necrosis factor soluble receptor 75: The principal receptor form released by human alveolar macrophages and monocytes in the presence of interferon gamma. Am. J. Respir. Cell Mol. Biol., 3, 279-287 (1996)
[24] Gonin, J.; Carlotti, A.; Dietrich, C.; Audebourg, A.; Radenen-Bussiere, B.; Caignard, A.; Avril, M.-F.; Vacher-Lavenu, M.-C.; Larousserie, F.; Devergne, O., Expression of IL-27 by tumor cells in invas cutaneous and metastatic melanomas. PLoS One, 10 (2013)
[25] Grivennikov, S. I.; Greten, F. R.; Karin, M., Immunity, inflammation, and cancer. Cell, 883-899 (2010)
[26] Guan, J.; Lim, K. S.; Mekhail, T.; Chang, C. C., Programmed death ligand-1 (PD-L1) expression in the programmed death receptor-1 (PD-1)/PD-L1 blockade: A key player against various cancers. Arch. Pathol. Lab. Med., 6, 851-861 (2017)
[27] Haabeth, O. A.W.; Tveita, A. A.; Fauskanger, M.; Schjesvold, F.; Lorvik, K. B.; Hofgaard, P. O.; Omholt, H.; Munthe, L. A.; Dembic, Z.; Corthay, A.; Bogen, B., How do CD \(4{}^+\) T cells detect and eliminate tumor cells that either lack or express MHC class II molecules?. Front. Immunol. (2014)
[28] Hamza, T.; Barnett, J. B.; Li, B., Interleukin 12 a key immunoregulatory cytokine in infection applications. Int. J. Mol. Sci., 3, 789-806 (2010)
[29] Hao, W.; Crouser, E. D.; Friedman, A., Mathematical model of sarcoidosis. Proc. Natl. Acad. Sci. USA, 45, 16065-16070 (2014) · Zbl 1355.92049
[30] Hao, W.; Friedman, A., The role of exosomes in pancreatic cancer microenvironment. Bull. Math. Biol., 5, 1111-1133 (2018) · Zbl 1394.92056
[31] Hirahara, K.; Ghoreschi, K.; Yang, X. P.; Takahashi, H.; Laurence, A.; Vahedi, G., Interleukin-27 priming of T cells controls IL-17 production in trans via induction of the ligand PD-L1. Immunity, 1017-1030 (2012)
[32] Huber, M.; Steinwald, V.; Guralnik, A.; Brustle, A.; Kleemann, P.; Rosenplanter, C.; Decker, T.; Lohoff, M., IL-27 inhibits the development of regulatory T cells via STAT3. Int. Immunol., 223-234 (2008)
[33] Hunter, C. A., New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat. Rev. Immunol., 521-531 (2005)
[34] Hunter, C. A.; Kastelein, R., Interleukin-27: balancing protective and pathological immunity. Immunity, 6, 960-969 (2012)
[35] Hwang, E. S.; Hong, J.-H.; Glimcher, L. H., IL-2 production in developing Th1 cells is regulated by heterodimerization of RelA and T-bet and requires T-bet serine residue 508. J. Electron. Mater., 1289-1300 (2005)
[36] Ishikawa, S.; Ishikawa, T.; Tezuka, C.; Asano, K.; Sunagawa, M.; Hisamitsu, T., Efficacy of juzentaihoto for tumor immunotherapy in B16 melanoma metastasis model. Evid. Based Complement Altern. Med. (2017)
[37] Janco, J. M.T.; Lamichhane, P.; Karyampudi, L.; Knutson, K. L., Tumor-infiltrating dendritic cells in cancer pathogenesis. J. Immunol., 7, 2985-2991 (2015)
[38] Jankowski, M.; Kopiński, P.; Goc, A., Interleukin-27: Biological properties and clinical application. Arch. Immunol. Ther. Exp. (Warsz), 6, 417-425 (2010)
[39] Joller, N.; Lozano, E.; Burkett, P. R.; Patel, B.; Xiao, S.; Zhu, C., Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity, 569-581 (2014)
[40] Kish, D. D.; Gorbachev, A. V.; Fairchild, R. L., CD \(8{}^+\) T cells produce IL-2, which is required for CD \(4{}^+\) CD \(25{}^+\) T cell regulation of effector CD \(8{}^+\) T cell development for contact hypersensitivity responses. J. Leukoc. Biol., 725-735 (2005)
[41] Kourko, O.; Seaver, K.; Odoardi, N.; Basta, S.; Gee, K., IL-27, IL-30, and IL-35: A cytokine triumvirate in cancer. Front. Oncol., 969 (2019)
[42] Kyrtsonis, M. C.; Repa, C.; Dedoussis, G. V.; Mouzaki, A.; Simeonidis, A.; Stamatelou, M., Serum transforming growth factor-beta 1 is related to the degree of immunoparesis in patients with multiple myeloma. Med. Oncol., 2, 124-128 (1998)
[43] Lai, X.; Friedman, A., Combination therapy for melanoma with BRAF/MEK inhibitor and immune checkpoint inhibitor: a mathematical model. BMC Syst. Biol., 1, 70 (2017)
[44] Lai, X.; Friedman, A., Combination therapy of cancer with cancer vaccine and immune checkpoint inhibitors: A mathematical model. PLoS One, 5 (2017)
[45] Lai, X.; Friedman, A., How to schedule VEGF and PD-1 inhibitors in combination cancer therapy?. BMC Syst. Biol., 1, 30 (2019)
[46] Lai, X.; Friedman, A., Mathematical modeling of cancer treatment with radiation and PD-L1 inhibitor. Sci. China Math., 63 (2020) · Zbl 1431.35253
[47] Lai, X.; Hao, W.; Friedman, A., TNF-\( \alpha\) inhibitor reduces drug-resistance to anti-PD-1: A mathematical model. PLoS One, 4 (2020)
[48] Lai, Y.-P.; Lin, C.-C.; Liao, W.-J.; Tang, C.-Y.; Chen, S.-C., CD \(4{}^+\) T cell-derived IL-2 signals during early priming advances primary CD \(8{}^+\) T cell responses. PLoS One, e7766 (2009)
[49] Lai, X.; Stiff, A.; Duggan, M.; Wesolowski, R.; Carson, W. E.; Friedman, A., Modeling combination therapy for breast cancer with BET and immune checkpoint inhibitors. Proc. Natl. Acad. Sci. USA, 21, 5534-5539 (2018)
[50] Lederer, J. A.; Liou, J. S.; Todd, M. D.; Glimcher, L. H.; Lichtman, A. H., Regulation of cytokine gene expression in T helper cell subsets. J. Immunol., 77-86 (1994)
[51] Liao, K.-L.; Bai, X.-F.; Friedman, A., Mathematical modeling of interleukin 27 induction of anti-tumor T cells response. PLoS One, 3, 91844 (2014)
[52] Liao, K.-L.; Bai, X.-F.; Friedman, A., Mathematical modeling of interleukin 35 promoting tumor growth and angiogenesis. PLoS One, 10 (2014)
[53] Liu, J.; Chen, Z.; Li, Y.; Zhao, W.; Wu, J.; Zhang, Z., PD-1/PD-L1 checkpoint inhibitors in tumor immunotherapy. Front. Pharmacol., 2339 (2021)
[54] Liu, Z.; Liu, J.-Q.; Talebian, F.; Wu, L.-C.; Li, S.; Bai, X.-F., IL-27 enhances the survival of tumor antigen-specific CD8+ T cells and programs them into IL-10-producing. memory precursor-like effector cells. Eur. J. Immunol., 468-479 (2013)
[55] Lowther, D. E.; Goods, B. A.; Lucca, L. E.; Lerner, B. A.; Raddassi, K.; Dijk, D., PD-1 marks dysfunctional regulatory T cells in malignant gliomas. JCI Insight, e85935 (2016)
[56] Luckheeram, R. V.; Zhou, R.; Verma, A. D.; Xia, B., CD \(4{}^+\) T cells: differentiation and functions. Clin. Dev. Immunol. (2012)
[57] Marin-Acevedo, J. A.; Kimbrough, E. O.; Lou, Y., Next generation of immune checkpoint inhibitors and beyond. J. Hematol. Oncol., 45 (2021)
[58] Marino, S.; Hogue, I. B.; Ray, C. J.; Kirschner, D. E., A methodology for performing global uncertaintly and sensitivity analysis in systems biology. J. Theoret. Biol., 178-196 (2008) · Zbl 1400.92013
[59] Matsui, M.; Kishida, T.; Nakano, H.; Yoshimoto, K.; Shin-Ya, M.; Shimada, T., Interleukin-27 activates natural killer cells and suppresses NK-resistant head and neck squamous cell carcinoma through inducing antibody-dependent cellular cytotoxicity. Cancer Res., 2523-2530 (2009)
[60] Mempel, T.; Henrickson, S.; Von Andrian, U., T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature, 154-159 (2004)
[61] Min, B.; Kim, D.; Feige, M. J., IL-\(30{}^+\) (IL-27A): a familiar stranger in immunity, inflammation, and cancer. Exp. Mol. Med., 823-834 (2021)
[62] Moon, S.-J.; Park, J.-S.; Heo, Y.-J.; Kang, C.-M.; Kim, E.-K.; Lim, M.-A., In vivo action of IL-27: reciprocal regulation of Th17 and treg cells in collagen-induced arthritis. Exp. Mol. Med., 46 (2013)
[63] Muppidi, M. R.; George, S., Immune checkpoint inhibitors in renal cell carcinoma. J. Target. Ther. Cancer, 47-52 (2015)
[64] Nemunaitis, J.; Fong, T.; Shabe, P.; Martineau, D.; Ando, D., Comparison of serum interleukin-10 (il-10) levels between normal volunteers and patients with advanced melanoma. Cancer Invest., 3, 239-247 (2001)
[65] Pardoll, D., T cells take aim at cancer. Proc. Natl. Acad. Sci. USA, 15840-15842 (2002)
[66] Piccirillo, C. A.; Shevach, E. M., Cutting edge: control of CD \(8{}^+\) T cell activation by CD \(4{}^+\) CD \(25{}^+\) immunoregulatory cells. J. Immunol., 1137-1140 (2001)
[67] Poniatowski, L. A.; Wojdasiewicz, P.; Gasik, R.; Szukiewicz, D., Transforming growth factor beta family: Insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. Mediators Inflamm. (2015)
[68] Postow, M. A.; Callahan, M. K.; Wolchok, J. D., Immune checkpoint blockade in cancer therapy. J. Clin. Oncol., 17, 1974-1982 (2015)
[69] Roberston-Tessi, M.; El-Kareh, A.; Goriely, A., A mathematical model of tumor-immune interactions. J. Theoret. Biol., 56-73 (2012) · Zbl 1397.92358
[70] Robert, C., A decade of immune-checkpoint inhibitors in cancer therapy. Nature Commun., 3801 (2020)
[71] Salcedo, R.; Stauffer, J. K.; Lincoln, E.; Back, T. C.; Hixon, J. A.; Hahn, C., IL-27 mediates complete regression of orthotopic primary and metastatic murine neuroblastoma tumors: role for CD \(8{}^+\) T cells. J. Immunol., 7170-7182 (2004)
[72] Shi, L.; Chen, S.; Yan, L.; Li, Y., The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J. Hematol. Oncol., 74 (2013)
[73] Shui, Y. B.; Wang, X.; Hu, J. S.; Wang, S. P.; Garcia, C. M.; Potts, J. D.; Sharma, Y.; Beebe, D. C., Vascular endothelial growth factor expression and signaling in the lens. Invest. Ophthalmol. Vis. Sci., 9, 3911-3919 (2003)
[74] Siewe, N.; Friedman, A., TGF-\( \beta\) inhibition can overcome cancer primary resistance to PD-1 blockade: A mathematical model. PLoS One, 6 (2021)
[75] Tang, M. R.; Wang, Y. X.; Guo, S.; Han, S. Y.; Li, H. H.; Jin, S. F., Prognostic significance of in situ and plasma levels of transforming growth factor \(\beta 1, - 2\) and \(- 3\) in cutaneous melanoma. Mol. Med. Rep., 6, 4508-4512 (2015)
[76] Tran, D. Q., Tgf-\( \beta \): the sword, the wand, and the shield of foxp \(3{}^+\) regulatory T cells. J. Mol. Cell Biol., 29-37 (2012)
[77] Trandem, K.; Zhao, J.; Fleming, E.; Perlman, S., Highly activated cytotoxic CD8 T cells express protective IL-10 at the peak of coronavirus-induced encephalitis. J. Immunol., 6, 3642-3652 (2011)
[78] Trinchieri, G., Interleukin-10 production by effector T cells: Th1 cells show self control. J. Exp. Med., 2, 239-243 (2007)
[79] Truty, M. J.; Urrutia, R., Basics of tgf-beta and pancreatic cancer. Pancreatology, 423-435 (2007)
[80] Tsuji-Takayama, K.; Suzuki, M.; Yamamoto, M.; Harashima, A.; Okochi, A.; Otani, T., The production of IL-10 by human regulatory T cells is enhanced by IL-2 through a STAT5-responsive intronic enhancer in the IL-10 locus. J. Immunol., 6, 3897-3905 (2008)
[81] Varayathu, H.; Sarathy, V.; Thomas, B. E.; Mufti, S. S.; Naik, R., Combination strategies to augment immune check point inhibitors efficacy - Implications for translational research. Front. Oncol. (2021)
[82] Vukmanovic-Stejic, M.; Zhang, Y.; Cook, J.; Fletcher, J.; McQuaid, A., Human cd \(4{}^+\) cd \(25 \operatorname{hi}\) foxp \(3{}^+\) regulatory t cells are derived by rapid turnover of memory populations in vivo. J. Clin. Invest., 2423-2433 (2006)
[83] Wojno, E. D.; Hosken, N.; Stumhofer, J. S.; O’Hara, A. C.; Mauldin, E.; Fang, Q., A role for IL-27 in limiting T regulatory cell populations. J. Immunol., 266-273 (2011)
[84] Wolchok, J. D.; Kluger, H.; Callahan, M. K.; Postow, M. A.; Rizvi, N. A.; Lesokhin, A. M., Nivolumab plus Ipilimumab in advanced melanoma. N. Engl. J. Med., 122-133 (2014)
[85] Yoshida, H.; Hunter, C. A., The immunobiology of interleukin-27. Annu. Rev. Immunol., 417-443 (2015)
[86] Yoshimura, A.; Wakabayashi, Y.; Mori, T., Cellular and molecular basis for the regulation of inflammation by TGF-beta. J. Biochem., 6, 781-792 (2010)
[87] Young, M. E., Estimation of diffusion coefficients of proteins. Biotech. Bioeng., 947-955 (1980)
[88] Zhang, N.; Bevan, M. J., CD \(8{}^+\) T cells: Foot soldiers of the immune system. Immunity, 161-168 (2011)
[89] Zheng, S. G.; Wang, J.; Horwitz, D. A., Cutting edge: Foxp \(3{}^+\) CD \(4{}^+\) CD \(25{}^+\) regulatory T cells induced by IL-2 and TGF-beta are resistant to Th17 conversion by IL-6. J. Immunol., 7112-7116 (2008)
[90] Zhu, J.; Liu, J.-Q.; Shi, M.; Cheng, X.; Ding, M.; Zhang, J. C., IL-27 gene therapy induces depletion of Tregs and enhances the efficacy of cancer immunotherapy. JCI Insight, 7, 98745 (2018)
[91] Zou, W.; Wolchok, J. D.; Chen, L., PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers and combinations. Sci. Transl. Med., 328, 328rv4 (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.