×

A comprehensive complex systems approach to the study and analysis of mammalian cell cycle control system in the presence of DNA damage stress. (English) Zbl 1382.92113

Summary: Not many models of mammalian cell cycle system exist due to its complexity. Some models are too complex and hard to understand, while some others are too simple and not comprehensive enough. Moreover, some essential aspects, such as the response of G1-S and G2-M checkpoints to DNA damage as well as the growth factor signalling, have not been investigated from a systems point of view in current mammalian cell cycle models. To address these issues, we bring a holistic perspective to cell cycle by mathematically modelling it as a complex system consisting of important sub-systems that interact with each other. This retains the functionality of the system and provides a clearer interpretation to the processes within it while reducing the complexity in comprehending these processes. To achieve this, we first update a published ODE mathematical model of cell cycle with current knowledge. Then the part of the mathematical model relevant to each sub-system is shown separately in conjunction with a diagram of the sub-system as part of this representation. The model sub-systems are Growth Factor, DNA damage, G1-S, and G2-M checkpoint signalling. To further simplify the model and better explore the function of sub-systems, they are further divided into modules. Here we also add important new modules of: chk-related rapid cell cycle arrest, p53 modules expanded to seamlessly integrate with the rapid arrest module, Tyrosine phosphatase modules that activate Cyc\(_-\)Cdk complexes and play a crucial role in rapid and delay arrest at both G1-S and G2-M, Tyrosine Kinase module that is important for inactivating nuclear transport of CycB\(_-\)cdk1 through Wee1 to resist M phase entry, Plk1-Related module that is crucial in activating Tyrosine phosphatases and inactivating Tyrosine kinase, and APC-Related module to show steps in CycB degradation. This multi-level systems approach incorporating all known aspects of cell cycle allowed us to (i) study, through dynamic simulation of an ODE model, comprehensive details of cell cycle dynamics under normal and DNA damage conditions revealing the role and value of the added new modules and elements, (ii) assess, through a global sensitivity analysis, the most influential sub-systems, modules and parameters on system response, such as G1-S and G2-M transitions, and (iii) probe deeply into the relationship between DNA damage and cell cycle progression and test the biological evidence that G1-S is relatively inefficient in arresting damaged cells compared to G2-M checkpoint. To perform sensitivity analysis, self-organizing map with correlation coefficient analysis (SOMCCA) is developed which shows that Growth Factor and G1-S checkpoint sub-systems and 13 parameters in the modules within them are crucial for G1-S and G2-M transitions. To study the relative efficiency of DNA damage checkpoints, a checkpoint efficiency evaluator (CEE) is developed based on perturbation studies and statistical Type II error. Accordingly, cell cycle is about 96% efficient in arresting damaged cells with G2-M checkpoint being more efficient than G1-S. Further, both checkpoint systems are near perfect (98.6%) in passing healthy cells. Thus this study has shown the efficacy of the proposed systems approach to gain a better understanding of different aspects of mammalian cell cycle system separately and as an integrated system that will also be useful in investigating targeted therapy in future cancer treatments.

MSC:

92C37 Cell biology
92C40 Biochemistry, molecular biology
Full Text: DOI

References:

[1] Abbas, T.; Dutta, A., p21 in cancer: intricate networks and multiple activities, Nat. Rev. Cancer, 9, 6, 400-414 (2009)
[2] Adhikary, S.; Eilers, M., Transcriptional regulation and transformation by Myc proteins, Nat. Rev. Mol. Cell Biol., 6, 8, 635-645 (2005)
[3] Agarwal, M. L.; Agarwal, A.; Taylor, W. R.; Stark, G. R., p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts, Proc. Natl. Acad. Sci., 92, 18, 8493-8497 (1995)
[4] Aguda, B.; Tang, Y., The kinetic origins of the restriction point in the mammalian cell cycle, Cell Prolif., 32, 5, 321-335 (1999)
[5] Aguda, B. D., A quantitative analysis of the kinetics of the G2 DNA damage checkpoint system, Proc. Natl Acad. Sci., 96, 20, 11352-11357 (1999)
[6] Alao, J. P., The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention, Mol. Cancer, 6, 1, 24 (2007)
[7] Alberts, B., Molecular Biology of the Cell (2008), Reference edition: Garland Science. Retrieved from
[8] Ang, X. L.; Harper, J. W., Interwoven ubiquitination oscillators and control of cell cycle transitions, Sci. Signal., 2004, 242, pe31 (2004)
[9] Baluchamy, S.; Rajabi, H. N.; Thimmapaya, R.; Navaraj, A.; Thimmapaya, B., Repression of c-Myc and inhibition of G1 exit in cells conditionally overexpressing p300 that is not dependent on its histone acetyl transferase activity, Proc. Natl. Acad. Sci., 100, 16, 9524-9529 (2003)
[10] Bar-Or, R. L.; Maya, R.; Segel, L. A.; Alon, U.; Levine, A. J.; Oren, M., Generation of oscillations by the p53-Mdm2 feedback loop: a theoretical and experimental study, Proc. Natl. Acad. Sci., 97, 21, 11250-11255 (2000)
[11] Batchelor, E.; Mock, C. S.; Bhan, I.; Loewer, A.; Lahav, G., Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage, Mol. Cell, 30, 3, 277-289 (2008)
[12] Behl, C.; Ziegler, C., Cell cycle: the life cycle of a cell, Cell Aging: Molecular Mechanisms and Implications for Disease, 9-19 (2014), Springer: Springer Berlin Heidelberg, Retrieved from
[13] Beishline, K.; Azizkhan-Clifford, J., Interplay between the cell cycle and double-strand break response in mammalian cells, Cell Cycle Control, 41-59 (2014), Springer
[14] Benesty, J.; Chen, J.; Huang, Y.; Cohen, I., Pearson correlation coefficient, Noise Reduction in Speech Processing, 1-4 (2009), Springer
[15] Berndt, N., Roles and regulation of serine/threonine-specific protein phosphatases in the cell cycle, Prog. Cell Cycle Res., 5, 497-510 (2002)
[16] Berns, K.; Martins, C.; Dannenberg, J.-H.; Berns, A.; Riele, H.t.; Bernards, R., p27kip1-independent cell cycle regulation by MYC, Oncogene, 19, 42, 4822-4827 (2000)
[17] Berridge, MichaelJ., Cell signalling biology: module 9 - cell cycle and proliferation, Biochem. J. (2012)
[18] Blomberg, I.; Hoffmann, I., Ectopic expression of Cdc25A accelerates the G1/S transition and leads to premature activation of cyclin E-and cyclin A-dependent kinases, Mol. Cell Biol., 19, 9, 6183-6194 (1999)
[19] Bollen, M.; Beullens, M., Signaling by protein phosphatases in the nucleus, Trends Cell Biol., 12, 3, 138-145 (2002)
[20] Boutros, R.; Lobjois, V.; Ducommun, B., CDC25 phosphatases in cancer cells: key players? Good targets, Nat. Rev. Cancer, 7, 7, 495-507 (2007)
[21] Cann, K. L.; Hicks, G. G., Regulation of the cellular DNA double-strand break response, Biochem. Cell. Biol., 85, 6, 663-674 (2007)
[22] Cardozo, T.; Pagano, M., The SCF ubiquitin ligase: insights into a molecular machine, Nat. Rev. Mol. Cell Biol., 5, 9, 739-751 (2004)
[23] Carvajal, D.; Tovar, C.; Yang, H.; Vu, B. T.; Heimbrook, D. C.; Vassilev, L. T., Activation of p53 by MDM2 antagonists can protect proliferating cells from mitotic inhibitors, Cancer. Res., 65, 5, 1918-1924 (2005)
[24] Chae, H.-D.; Yun, J.; Bang, Y.-J.; Shin, D. Y., Cdk2-dependent phosphorylation of the NF-Y transcription factor is essential for the expression of the cell cycle-regulatory genes and cell cycle G1/S and G2/M transitions, Oncogene, 23, 23, 4084-4088 (2004)
[25] Chae, H. D.; Shin, D. Y., NF-Y binds to both G1-and G2-specific cyclin promoters; a possible role in linking CDK2/Cyclin A to CDK1/Cyclin B, Biochem. Mol. Biol. Rep., 44, 8, 553-557 (2011)
[26] Chaturvedi, P.; Eng, W. K.; Zhu, Y.; Mattern, M. R.; Mishra, R.; Hurle, M. R.; Faucette, L. F., Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway, Oncogene, 18, 28, 4047-4054 (1999)
[27] Chen, M.-S.; Ryan, C. E.; Piwnica-Worms, H., Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding, Mol. Cell Biol., 23, 21, 7488-7497 (2003)
[28] Chu, I. M.; Hengst, L.; Slingerland, J. M., The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy, Nat. Rev. Cancer, 8, 4, 253-267 (2008)
[29] Collado, M.; Serrano, M., Senescence in tumours: evidence from mice and humans, Nat. Rev. Cancer, 10, 1, 51-57 (2010)
[30] Dang, C. V., c-Myc target genes involved in cell growth, apoptosis, and metabolism, Mol. Cell Biol., 19, 1, 1-11 (1999)
[31] de Alboran, I. M.; O’Hagan, R. C.; Gärtner, F.; Malynn, B.; Davidson, L.; Rickert, R.; Alt, F. W., Analysis of C-MYC function in normal cells via conditional gene-targeted mutation, Immunity, 14, 1, 45-55 (2001)
[32] De Souza, C. P.; Ellem, K. A.; Gabrielli, B. G., Centrosomal and cytoplasmic Cdc2/cyclin B1 activation precedes nuclear mitotic events, Exp. Cell. Res., 257, 1, 11-21 (2000)
[33] Deckbar, D.; Jeggo, P. A.; Löbrich, M., Understanding the limitations of radiation-induced cell cycle checkpoints, Crit. Rev. Biochem. Mol. Biol., 46, 4, 271-283 (2011)
[35] Donzelli, M.; Draetta, G. F., Regulating mammalian checkpoints through Cdc25 inactivation, EMBO Rep., 4, 7, 671-677 (2003)
[36] Eckerdt, F.; Strebhardt, K., Polo-like kinase 1: target and regulator of anaphase-promoting complex/cyclosome-dependent proteolysis, Cancer Res., 66, 14, 6895-6898 (2006)
[37] Fry, R. C.; Begley, T. J.; Samson, L. D., Genome-wide responses to DNA-damaging agents, Annu. Rev. Microbiol., 59, 357-377 (2005)
[38] Fung, T. K.; Poon, R. Y., A roller coaster ride with the mitotic cyclins Elsevier, (Symposium conducted at the meeting of the Seminars in cell & developmental biology (2005))
[39] Gauthier, J. H.; Pohl, P. I., A general framework for modeling growth and division of mammalian cells, BMC Syst. Biol., 5, 1, 3 (2011)
[40] Geva‐Zatorsky, N.; Rosenfeld, N.; Itzkovitz, S.; Milo, R.; Sigal, A.; Dekel, E.; Lahav, G., Oscillations and variability in the p53 system, Mol. Syst. Biol., 2, 1 (2006)
[41] Glotzer, M., The molecular requirements for cytokinesis, Science, 307, 5716, 1735-1739 (2005)
[42] Golan, A.; Yudkovsky, Y.; Hershko, A., The cyclin-ubiquitin ligase activity of cyclosome/APC is jointly activated by protein kinases Cdk1-cyclin B and Plk, J. Biol. Chem., 277, 18, 15552-15557 (2002)
[43] Goulev, Y.; Charvin, G., Ultrasensitivity and positive feedback to promote sharp mitotic entry, Mol. Cell, 41, 3, 243-244 (2011)
[44] Hamer, P. C.D. W.; Mir, S. E.; Noske, D.; Van Noorden, C. J.; Würdinger, T., WEE1 kinase targeting combined with DNA-damaging cancer therapy catalyzes mitotic catastrophe, Clin. Cancer Res., 17, 13, 4200-4207 (2011)
[45] Hartwell, L. H.; Weinert, T. A., Checkpoints: controls that ensure the order of cell cycle events, Science, 246, 4930, 629-634 (1989)
[46] Heald, R.; Nogales, E., Microtubule dynamics, J. Cell Sci., 115, 1, 3-4 (2002)
[47] Helin, K., Regulation of cell proliferation by the E2F transcription factors, Curr. Opin. Genet. Dev., 8, 1, 28-35 (1998)
[48] Hermeking, H.; Benzinger, A., 14-3-3 proteins in cell cycle regulation Elsevier, (Symposium conducted at the meeting of the Seminars in cancer biology (2006))
[49] Hu, B.; Mitra, J.; van den Heuvel, S.; Enders, G. H., S and G2 phase roles for Cdk2 revealed by inducible expression of a dominant-negative mutant in human cells, Mol. Cell Biol., 21, 8, 2755-2766 (2001)
[50] Iritani, B. M.; Eisenman, R. N., c-Myc enhances protein synthesis and cell size during B lymphocyte development, Proc. Natl. Acad. Sci., 96, 23, 13180-13185 (1999)
[51] Iwamoto, K.; Hamada, H.; Eguchi, Y.; Okamoto, M., Mathematical modeling of cell cycle regulation in response to DNA damage: exploring mechanisms of cell-fate determination, Biosystems, 103, 3, 384-391 (2011)
[52] Iwamoto, K.; Tashima, Y.; Hamada, H.; Eguchi, Y.; Okamoto, M., Mathematical modeling and sensitivity analysis of G1/S phase in the cell cycle including the DNA-damage signal transduction pathway, Biosystems, 94, 1, 109-117 (2008)
[53] Jackson, S. P.; Bartek, J., The DNA-damage response in human biology and disease, Nature, 461, 7267, 1071-1078 (2009)
[54] Ji, J.-Y.; Dyson, N. J., Interplay between Cyclin-dependent Kinases and E2F-dependent transcription, Cell Cycle Deregulation in Cancer, 23-41 (2010), Springer
[55] Jin, S.; Tong, T.; Fan, W.; Fan, F.; Antinore, M. J.; Zhu, X.; Rajasekaran, B., GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity, Oncogene, 21, 57, 8696-8704 (2002)
[56] Joaquin, M.; Watson, R., Cell cycle regulation by the B-Myb transcription factor, Cell. Mol. Life Sci. CMLS, 60, 11, 2389-2401 (2003)
[57] Karlsson-Rosenthal, C.; Millar, J., Cdc25: mechanisms of checkpoint inhibition and recovery, Trends Cell Biol., 16, 6, 285-292 (2006)
[58] Kastan, M. B.; Bartek, J., Cell-cycle checkpoints and cancer, Nature, 432, 7015, 316-323 (2004)
[59] Kitano, H., Towards a theory of biological robustness, Mol. Syst. Biol., 3, 1 (2007)
[60] Kiyokawa, H.; Ray, D., In vivo roles of CDC25 phosphatases: biological insight into the anti-cancer therapeutic targets, Anti Cancer Agents Med. Chem., 8, 8, 832 (2008)
[61] Kohn, K. W.; Pommier, Y., Molecular interaction map of the p53 and Mdm2 logic elements, which control the Off-On switch of p53 in response to DNA damage, Biochem. Biophys. Res. Commun., 331, 3, 816-827 (2005)
[62] Kristjansdottir, K.; Rudolph, J., Cdc25 phosphatases and cancer, Chem. Biol., 11, 8, 1043-1051 (2004)
[63] Kumagai, A.; Dunphy, W. G., Binding of 14-3-3 proteins and nuclear export control the intracellular localization of the mitotic inducer Cdc25, Genes Dev., 13, 9, 1067-1072 (1999)
[64] Li, F.; Long, T.; Lu, Y.; Ouyang, Q.; Tang, C., The yeast cell-cycle network is robustly designed, Proc. Natl. Acad. Sci. U.S.A., 101, 14, 4781-4786 (2004)
[65] Li, M.; Zhang, P., The function of APC/CCdh1 in cell cycle and beyond, Cell Div., 4, 1, 2 (2009)
[66] Lindon, C.; Pines, J., Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells, J. Cell Biol., 164, 2, 233-241 (2004)
[67] Lindqvist, A.; Rodríguez-Bravo, V.; Medema, R. H., The decision to enter mitosis: feedback and redundancy in the mitotic entry network, J. Cell Biol., 185, 2, 193-202 (2009)
[68] Ling, H.; Kulasiri, D.; Samarasinghe, S., Robustness of G1/S checkpoint pathways in cell cycle regulation based on probability of DNA-damaged cells passing as healthy cells, Biosystems, 101, 3, 213-221 (2010)
[69] Ludlow, J.; Glendening, C.; Livingston, D.; DeCarprio, J., Specific enzymatic dephosphorylation of the retinoblastoma protein, Mol. Cell Biol., 13, 1, 367-372 (1993)
[70] Mailand, N.; Podtelejnikov, A. V.; Groth, A.; Mann, M.; Bartek, J.; Lukas, J., Regulation of G2/M events by Cdc25A through phosphorylation‐dependent modulation of its stability, EMBO J., 21, 21, 5911-5920 (2002)
[71] Massagué, J., G1 cell-cycle control and cancer, Nature, 432, 7015, 298-306 (2004)
[72] Meek, D. W., The p53 response to DNA damage, DNA Repair, 3, 8-9, 1049-1056 (2004), doi:
[73] Morgan, D. O., Cyclin-dependent kinases: engines, clocks, and microprocessors, Annu. Rev. Cell. Dev. Biol., 13, 1, 261-291 (1997)
[74] Morgan, D. O., The Cell cycle: Principles of Control (2007), New Science Press
[75] Murray, A. W., Recycling the cell cycle: cyclins revisited, Cell, 116, 2, 221-234 (2004), doi:
[76] Musgrove, E. A.; Caldon, C. E.; Barraclough, J.; Stone, A.; Sutherland, R. L., Cyclin D as a therapeutic target in cancer, Nat. Rev. Cancer, 11, 8, 558-572 (2011)
[77] Nakayama, K. I.; Nakayama, K., Regulation of the cell cycle by SCF-type ubiquitin ligases Elsevier, (Symposium conducted at the meeting of the seminars in cell & developmental biology (2005))
[78] Nelson, D. A.; Krucher, N. A.; Ludlow, J. W., High molecular weight protein phosphatase type 1 dephosphorylates the retinoblastoma protein, J. Biol. Chem., 272, 7, 4528-4535 (1997)
[79] Novák, B.; Sible, J. C.; Tyson, J. J., Checkpoints in the Cell Cycle, 1-8 (2003), eLS
[80] Novak, B.; Tyson, J. J., Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos, J. Cell Sci., 106, 4, 1153-1168 (1993)
[81] Novak, B.; Tyson, J. J., A model for restriction point control of the mammalian cell cycle, J. Theor. Biol., 230, 4, 563-579 (2004) · Zbl 1447.92048
[82] Nyberg, K. A.; Michelson, R. J.; Putnam, C. W.; Weinert, T. A., Toward maintaining the genome: DNA damage and replication checkpoints, Annu. Rev. Genet., 36, 1, 617-656 (2002)
[83] Ohtsubo, M.; Theodoras, A. M.; Schumacher, J.; Roberts, J. M.; Pagano, M., Human cyclin E, a nuclear protein essential for the G1-to-S phase transition, Mol. Cell Biol., 15, 5, 2612-2624 (1995)
[84] Pardee, A., G1 events and regulation of cell proliferation, Science, 246, 4930, 603-608 (1989)
[85] Perry, J.; Kornbluth, S., Cdc25 and Wee1: analogous opposites, Cell Div., 2, 1, 12 (2007)
[86] Peters, J.-M., The anaphase-promoting complex: proteolysis in mitosis and beyond, Mol. Cell, 9, 5, 931-943 (2002)
[87] Pomerening, J. R.; Sontag, E. D.; Ferrell, J. E., Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2, Nat. Cell Biol., 5, 4, 346-351 (2003)
[88] Qiao, X.; Zhang, L.; Gamper, A. M.; Fujita, T.; Wan, Y., APC/C-Cdh1: from cell cycle to cellular differentiation and genomic integrity, Cell Cycle, 9, 19, 3904 (2010)
[89] Rieder, C. L., Mitosis in vertebrates: the G2/M and M/A transitions and their associated checkpoints, Chromosome Res., 19, 3, 291-306 (2011)
[90] Samarasinghe, S., Neural Networks for Applied Sciences and Engineering: from Fundamentals to Complex Pattern Recognition (2006), CRC Press
[91] Sancar, A.; Lindsey-Boltz, L. A.; Ünsal-Kaçmaz, K.; Linn, S., Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints, Annu. Rev. Biochem., 73, 1, 39-85 (2004)
[92] Satyanarayana, A.; Kaldis, P., Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms, Oncogene, 28, 33, 2925-2939 (2009)
[93] Schmidt, E. V., The role of c-Myc in cellular growth control, Oncogene, 18, 19 (1999)
[94] Sexl, V.; Diehl, J. A.; Sherr, C. J.; Ashmun, R.; Beach, D.; Roussel, M. F., A rate limiting function of cdc25A for S phase entry inversely correlates with tyrosine dephosphorylation of Cdk2, Oncogene, 18, 3, 573-582 (1999)
[95] Sha, W.; Moore, J.; Chen, K.; Lassaletta, A. D.; Yi, C.-S.; Tyson, J. J.; Sible, J. C., Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts, Proc. Natl Acad. Sci., 100, 3, 975-980 (2003)
[96] Sheaff, R. J.; Groudine, M.; Gordon, M.; Roberts, J. M.; Clurman, B. E., Cyclin E-CDK2 is a regulator of p27Kip1, Genes Dev., 11, 11, 1464-1478 (1997)
[97] Sherr, C. J.; McCormick, F., The RB and p53 pathways in cancer, Cancer Cell, 2, 2, 103-112 (2002)
[98] Shiloh, Y.; Ziv, Y., The ATM protein kinase: regulating the cellular response to genotoxic stress, and more, Nat. Rev. Mol. Cell Biol., 14, 4, 197-210 (2013)
[99] Singhania, R.; Sramkoski, R. M.; Jacobberger, J. W.; Tyson, J. J., A hybrid model of mammalian cell cycle regulation, PLoS Comput. Biol., 7, 2, Article e1001077 pp. (2011)
[100] Siu, W. Y.; Yam, C. H.; Poon, R. Y., G1 versus G2 cell cycle arrest after adriamycin-induced damage in mouse Swiss3T3 cells, FEBS Lett., 461, 3, 299-305 (1999)
[101] Smith, A.; Simanski, S.; Fallahi, M.; Ayad, N. G., Redundant ubiquitin ligase activities regulate wee1 degradation and mitotic entry, Cell Cycle Landes Biosci., 6, 22, 2795 (2007)
[102] Smith, J.; Mun Tho, L.; Xu, N.; Gillespie, D. A., The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer, Adv. Cancer. Res., 108, 73-112 (2010), (C)
[103] SU, C.-C.; LIN, J.-G.; CHEN, G.-W.; LIN, W.-C.; CHUNG, J.-G., Down-regulation of Cdc25c, CDK1 and cyclin B1 and up-regulation of wee1 by curcumin promotes human colon cancer colo 205 cell entry into G2/M-phase of cell cycle, Cancer Genomics Proteomics, 3, 1, 55-61 (2006)
[104] Tashima, Y.; Hamada, H.; Okamoto, M.; Hanai, T., Prediction of key factor controlling G1/S phase in the mammalian cell cycle using system analysis, J. Biosci. Bioeng., 106, 4, 368-374 (2008)
[105] Tashima, Y.; Hanai, T.; Hamada, H.; Eguchi, Y.; Okamoto, M., Mathematical modeling of G2/M phase in the cell cycle with involving the p53/Mdm2 oscillation systemSpringer, (Symposium Conducted at the Meeting of the World Congress on Medical Physics and Biomedical Engineering (2007)), 2006
[106] Timofeev, O.; Cizmecioglu, O.; Settele, F.; Kempf, T.; Hoffmann, I., Cdc25 phosphatases are required for timely assembly of CDK1-cyclin B at the G2/M transition, J. Biol. Chem., 285, 22, 16978-16990 (2010)
[107] Trimarchi, J. M.; Lees, J. A., Sibling rivalry in the E2F family, Nat. Rev. Mol. Cell Biol., 3, 1, 11-20 (2002)
[108] Trinkle-Mulcahy, L.; Andrews, P. D.; Wickramasinghe, S.; Sleeman, J.; Prescott, A.; Lam, Y. W.; Lamond, A. I., Time-lapse imaging reveals dynamic relocalization of PP1γ throughout the mammalian cell cycle, Mol. Biol. Cell, 14, 1, 107-117 (2003)
[109] Trunnell, N. B.; Poon, A. C.; Kim, S. Y.; Ferrell, J. E., Ultrasensitivity in the regulation of Cdc25C by Cdk1, Mol. Cell, 41, 3, 263-274 (2011)
[110] Tyson, J. J., Modeling the cell division cycle: cdc2 and cyclin interactions, Proc. Natl Acad. Sci., 88, 16, 7328-7332 (1991)
[111] Van De Weerdt, B. C.; Medema, R. H., Review Polo-like kinases, Cell Cycle, 5, 8, 853-864 (2006)
[112] van Vugt, M. A.; Medema, R. H., Getting in and out of mitosis with Polo-like kinase-1, Oncogene, 24, 17, 2844-2859 (2005)
[113] Vassilev, L. T.; Vu, B. T.; Graves, B.; Carvajal, D.; Podlaski, F.; Filipovic, Z.; Klein, C., In vivo activation of the p53 pathway by small-molecule antagonists of MDM2, Science, 303, 5659, 844-848 (2004)
[114] Walworth, N. C., Cell-cycle checkpoint kinases: checking in on the cell cycle, Curr. Opin. Cell Biol., 12, 6, 697-704 (2000)
[115] Wasserman, L., All of Statistics: a Concise Course in Statistical Inference (2013), Springer Science & Business Media
[116] Watanabe, N.; Arai, H.; Nishihara, Y.; Taniguchi, M.; Watanabe, N.; Hunter, T.; Osada, H., M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFβ-TrCP, Proc. Natl. Acad. Sci. U.S.A., 101, 13, 4419-4424 (2004)
[117] Weiers, R., Introduction to Business Statistics (2010), South-Western Cengage Learning
[118] Yao, G.; Lee, T. J.; Mori, S.; Nevins, J. R.; You, L., A bistable Rb-E2F switch underlies the restriction point, Nat. Cell Biol., 10, 4, 476-482 (2008)
[119] Yuan, X.; Srividhya, J.; De Luca, T.; Ju-hyong, E. L.; Pomerening, J. R., Uncovering the role of APC-Cdh1 in generating the dynamics of S-phase onset, Mol. Biol. Cell, 25, 4, 441-456 (2014)
[120] Yun, J.; Chae, H.-D.; Choi, T.-S.; Kim, E.-H.; Bang, Y.-J.; Chung, J.; Shin, D. Y., Cdk2-dependent phosphorylation of the NF-Y transcription factor and its involvement in the p53-p21 signaling pathway, J. Biol. Chem., 278, 38, 36966-36972 (2003)
[121] Zhan, Q., Gadd45a, a p53-and BRCA1-regulated stress protein, in cellular response to DNA damage, Mutat. Res Fundam. Mol. Mech. Mutagen., 569, 1, 133-143 (2005)
[122] Zhang, Y.; Xiong, Y., A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation, Science, 292, 5523, 1910-1915 (2001)
[123] Zhu, W.; Giangrande, P. H.; Nevins, J. R., E2Fs link the control of G1/S and G2/M transcription, EMBO J., 23, 23, 4615-4626 (2004)
[124] Zitouni, S.; Nabais, C.; Jana, S. C.; Guerrero, A.; Bettencourt-Dias, M., Polo-like kinases: structural variations lead to multiple functions, Nat. Rev. Mol. Cell Biol., 15, 7, 433-452 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.