×

The Pompeiu property and approximation in \(L^{p}\) by linear combinations of shifts. (English. Russian original) Zbl 1325.46033

Dokl. Math. 89, No. 2, 173-175 (2014); translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 455, No. 2, 147-149 (2014).
Let \(\mathbb{R}^n\) denote the Euclidean \(n\)-dimensional space for \(n\geq 2\), and let \(M(n)\) denote the motion group of \(\mathbb{R}^n\), which consists of functions of the form \(g: \mathbb{R}^n\to\mathbb{R}^n\) which preserve distances and orientations between points of \(\mathbb{R}^n\). The \(L^p\)-space \(L^p(E)\), \(E\subseteq\mathbb{R}^n\), with norm \(\|.\|_p\) is defined by \[ L^p(E)= \{[f], \|[f]\|_p=\| f\|_p<\infty\}, \] where \[ \| f\|_p= \Biggl(\int_E |f(x)|^p\,dx\Biggr)^{1/p},\;[f]= f\text{ a.e.} \] A non-empty open bounded set \(A\) in \(\mathbb{R}^n\) is said to have the Pompeiu property if \[ \int_{gA}f(x)\,dx= 0 \] for any locally integrable \(f\) and all \(g\in M(n)\) implies that \(f=0\). The subset \(A\) is said to have the weak Pompeiu property if \[ \int_{\mathbb{R}^n}|f(x)|(1+ |x|)^{-\alpha}\,dx< \infty, \] where \(\alpha> 0\), and \[ \int_{gA}f(x)\,dx= 0 \] for all \(g\in M(n)\) implies that \(f=0\). The characteristic function of a set \(A\) is denoted by \(\chi_A\), so that \(\chi_A(x)=1\) if \(x\in A\). If \(J_v\), \(v>-1\), denotes the Bessel function of the first kind with parameter \(v\), then the set \(E_{\lambda,n}\) is defined by \(E_{\lambda,n}= \{r> 0: J_{{1\over 2}n}(r\lambda)= 0\}\).
The statements of this paper indicate that a non-empty open set \(A\subseteq H\), the upper half plane, does not have the weak Pompeiu property but exhibits the Pompeiu property for a finite parameter \(p\geq 2\) if and only if there is \(\lambda= \lambda(A)> 0\) such that \(\chi_A\) is the limit of linear combinations of balls in \(H\) with radii in \(E_{\lambda,n}\).
The introduction of the paper notes that similar statements were indicated in the case \(p=1\) by V. V. Volchkov [Russ. Acad. Sci., Sb., Math. 79, No. 2, 281–286 (1994); translation from Mat. Sb. 184, No. 7, 71–78 (1993; Zbl 0821.35034)].

MSC:

46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
28A75 Length, area, volume, other geometric measure theory

Citations:

Zbl 0821.35034
Full Text: DOI

References:

[1] L. Zalcman, in Approximation by Solutions of Partial Differential Equations (Kluwer Acad., Dordrecht, 1992), pp. 185-194. · Zbl 0830.26005 · doi:10.1007/978-94-011-2436-2_17
[2] Zalcman, L., No article title, Contemp. Math., 278, 69-74 (2001) · doi:10.1090/conm/278/04595
[3] V. V. Volchkov, Integral Geometry and Convolution Equations (Kluwer Acad., Dordrecht, 2003). · Zbl 1043.53003 · doi:10.1007/978-94-010-0023-9
[4] V. V. Volchkov and Vit. V. Volchkov, Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group (Springer, London, 2009). · Zbl 1192.43007 · doi:10.1007/978-1-84882-533-8
[5] Williams, S. A., No article title, Indiana Univ. Math. J., 30, 357-369 (2004) · Zbl 0439.35046 · doi:10.1512/iumj.1981.30.30028
[6] Volchkov, V. V.; Volchkov, Vit V., No article title, Math. Notes, 87, 59-70 (2010) · Zbl 1200.32002 · doi:10.1134/S0001434610010086
[7] Garofalo, N.; Segala, F., No article title, Trans. Am. Math. Soc., 346, 137-146 (1994) · Zbl 0823.30027 · doi:10.1090/S0002-9947-1994-1250819-4
[8] Dalmasso, R., No article title, Trans. Am. Math. Soc., 352, 2723-2736 (2000) · Zbl 0940.35145 · doi:10.1090/S0002-9947-99-02533-7
[9] Ebenfelt, P., No article title, Duke Math. J., 73, 561-582 (1994) · Zbl 0833.35004 · doi:10.1215/S0012-7094-94-07323-7
[10] B. G. Korenev, Introduction to the Theory of Bessel Functions (Nauka, Moscow, 1971) [in Russian]. · Zbl 0224.33007
[11] Volchkov, V. V., No article title, Sb.: Math., 79, 281-286 (1993)
[12] L. Hörmander, The Analysis of Linear Partial Differential Operators. I (Springer, Berlin, 1983; Mir, Moscow, 1986), Vol. 1. · Zbl 0521.35001 · doi:10.1007/978-3-642-96750-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.