×

Construction of relativistic quantum fields in the framework of white noise analysis. (English) Zbl 1007.81046

Summary: We construct a class of Euclidean invariant distributions \(\Phi_H\) indexed by a function \(H\) holomorphic at zero. These generalized functions can be considered as generalized densities w.r.t. the white noise measure, and their moments fulfill all Osterwalder-Schrader axioms, except for reflection positivity. The case where \(F(s)=-(H(is)+ {1\over 2}s^2)\), \(s\in \mathbb{R}\), is a Lévy characteristic is considered by S. Alkevirio, H. Gottschalk and J.-I. Wu [Rev. Math. Phys. 8, No. 6, 763-817 (1996; Zbl 0870.60038)]. Under this assumption the moments of the Euclidean invariant distributions \(\Phi_H\) can be represented as moments of a generalized white noise measure \(P_H\). Here we enlarge this class by convolution with kernels \(G\) coming from Euclidean invariant operators \({\mathcal G}\). The moments of the resulting Euclidean invariant distributions \(\Phi^G_H\) also fulfill all Osterwalder-Schrader axioms except for reflection positivity. For no nontrivial case we succeeded in proving reflection positivity. Nevertheless, an analytic extension to Wightman functions can be performed. These functions fulfill all Wightman axioms except for the positivity condition. Moreover, we can show that they fulfill the Hilbert space structure condition and therefore the modified Wightman axioms of indefinite metric quantum field theory.

MSC:

81T08 Constructive quantum field theory
81T05 Axiomatic quantum field theory; operator algebras
46N50 Applications of functional analysis in quantum physics
60H40 White noise theory

Citations:

Zbl 0870.60038

References:

[1] DOI: 10.1007/BF01647122 · doi:10.1007/BF01647122
[2] DOI: 10.1007/BF01837357 · doi:10.1007/BF01837357
[3] Albeverio S., Rev. Mod. Phys. 8 pp 763– (1996)
[4] DOI: 10.1007/BF01645738 · Zbl 0274.46047 · doi:10.1007/BF01645738
[5] Morchio G., Ann. Inst. Henri Poincaré Phys. Theor. A 33 pp 251– (1980)
[6] DOI: 10.1007/BF01218343 · Zbl 0672.46047 · doi:10.1007/BF01218343
[7] DOI: 10.1007/s002200050071 · Zbl 0898.46068 · doi:10.1007/s002200050071
[8] Albeverio S., Rev. Mod. Phys. 1 pp 291– (1990)
[9] Albeverio S., Rev. Mod. Phys. 1 pp 313– (1990)
[10] DOI: 10.1016/0370-2693(89)90087-7 · doi:10.1016/0370-2693(89)90087-7
[11] DOI: 10.1006/jfan.1993.1014 · Zbl 0777.60099 · doi:10.1006/jfan.1993.1014
[12] Fröhlich J., Helv. Phys. Acta 47 pp 265– (1974)
[13] DOI: 10.1016/0001-8708(77)90119-0 · Zbl 0345.46058 · doi:10.1016/0001-8708(77)90119-0
[14] Kondratiev Y., Acta Appl. Math. 44 pp 269– (1996)
[15] DOI: 10.1016/0022-1236(73)90091-8 · Zbl 0252.60053 · doi:10.1016/0022-1236(73)90091-8
[16] DOI: 10.1007/BF01608978 · Zbl 0303.46034 · doi:10.1007/BF01608978
[17] DOI: 10.1007/BF01645941 · Zbl 0295.46064 · doi:10.1007/BF01645941
[18] DOI: 10.1007/BF01646614 · Zbl 0275.60120 · doi:10.1007/BF01646614
[19] DOI: 10.1007/BF02099461 · Zbl 0834.46060 · doi:10.1007/BF02099461
[20] Fröhlich J., Ann. Inst. Henri Poincaré Phys. Theor. 21 pp 271– (1974)
[21] DOI: 10.1103/PhysRev.120.1926 · Zbl 0090.19902 · doi:10.1103/PhysRev.120.1926
[22] DOI: 10.1007/BF01661574 · Zbl 0177.56902 · doi:10.1007/BF01661574
[23] DOI: 10.1007/BF01218564 · Zbl 0514.35076 · doi:10.1007/BF01218564
[24] DOI: 10.1103/PhysRev.101.860 · Zbl 0074.22902 · doi:10.1103/PhysRev.101.860
[25] DOI: 10.1016/S0034-4877(97)85890-9 · Zbl 0906.46057 · doi:10.1016/S0034-4877(97)85890-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.