×

On reliable computation of lifetime in transient chaos. (English) Zbl 1481.37104

Summary: Transient chaos is typical behavior of dynamical systems. The computation of lifetimes is a significant task in transient chaos and relates to many applications, such as finding a long-lived trajectory to approximate chaotic saddle in high precision or controlling of transient chaos. However, the lifetime of a single initial point may vary drastically when computed with different numerical setups, indicating that the computed lifetime is likely to be incorrect. In this paper, the Lorenz equation is used as a benchmark to study the computation of lifetimes with a new numerical strategy, namely the Clean Numerical Simulation (CNS). We illustrate that the lifetime can only be computed reliably by the CNS. The mechanism of the imprecision of lifetime computed with traditional numerical methods is also analyzed via numerical experiments. In addition, the computation of long-lived trajectories is studied as an example to explain why reliable computation of lifetimes is crucial.

MSC:

37M25 Computational methods for ergodic theory (approximation of invariant measures, computation of Lyapunov exponents, entropy, etc.)
37M22 Computational methods for attractors of dynamical systems
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
70K55 Transition to stochasticity (chaotic behavior) for nonlinear problems in mechanics

Software:

Julia; MPFR
Full Text: DOI

References:

[1] Anosov, D. V. [1967] “ Geodesic flows on closed Riemannian manifolds of negative curvature,” Trudy Mat. Inst. Steklov90, 3-210. · Zbl 0163.43604
[2] Ben-Mizrachi, A., Procaccia, I. & Grassberger, P. [1984] “ Characterization of experimental (noisy) strange attractors,” Phys. Rev. A29, 975.
[3] Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. [2017] “ Julia: A fresh approach to numerical computing,” SIAM Rev.59, 65-98. · Zbl 1356.68030
[4] Bowen, R. [1975] “ \( \omega \)-limit sets for axiom a diffeomorphisms,” J. Diff. Eqs.18, 333-339. · Zbl 0315.58019
[5] Capeáns, R., Sabuco, J., Sanjuán, M. A. & Yorke, J. A. [2017] “ Partially controlling transient chaos in the Lorenz equations,” Philos. Trans. Roy. Soc. A375, 20160211. · Zbl 1404.37040
[6] Darbyshire, A. & Mullin, T. [1995] “ Transition to turbulence in constant-mass-flux pipe flow,” J. Fluid Mech.289, 83-114.
[7] Dawson, S., Grebogi, C., Sauer, T. & Yorke, J. A. [1994] “ Obstructions to shadowing when a Lyapunov exponent fluctuates about zero,” Phys. Rev. Lett.73, 1927.
[8] Dhamala, M. & Lai, Y.-C. [1999] “ Controlling transient chaos in deterministic flows with applications to electrical power systems and ecology,” Phys. Rev. E59, 1646.
[9] Do, Y. & Lai, Y.-C. [2004] “ Statistics of shadowing time in nonhyperbolic chaotic systems with unstable dimension variability,” Phys. Rev. E69, 016213.
[10] Eckhardt, B. & Mersmann, A. [1999] “ Transition to turbulence in a shear flow”, Phys. Rev. E60, 509.
[11] Faisst, H. & Eckhardt, B. [2004] “ Sensitive dependence on initial conditions in transition to turbulence in pipe flow,” J. Fluid Mech.504, 343-352. · Zbl 1116.76362
[12] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P. & Zimmermann, P. [2007] “ Mpfr: A multiple-precision binary floating-point library with correct rounding,” ACM Trans. Math. Softw.33, 13-es. · Zbl 1365.65302
[13] Grebogi, C., Ott, E. & Yorke, J. A. [1983] “ Crises, sudden changes in chaotic attractors, and transient chaos,” Physica D7, 181-200. · Zbl 0561.58029
[14] Grebogi, C., Hammel, S. M., Yorke, J. A. & Sauer, T. [1990] “ Shadowing of physical trajectories in chaotic dynamics: Containment and refinement,” Phys. Rev. Lett.65, 1527. · Zbl 1050.37521
[15] Hammel, S. M., Yorke, J. A. & Grebogi, C. [1987] “ Do numerical orbits of chaotic dynamical processes represent true orbits?” J. Complex.3, 136-145. · Zbl 0639.65037
[16] Hammel, S. M., Yorke, J. A. & Grebogi, C. [1988] “ Numerical orbits of chaotic processes represent true orbits,” Bull. New. Ser. Am. Math. Soc.19, 465-469. · Zbl 0689.58026
[17] Hayes, W. B. & Jackson, K. R. [2007] “ A fast shadowing algorithm for high-dimensional ode systems,” SIAM J. Sci. Comput.29, 1738-1758. · Zbl 1146.37042
[18] Hu, T. & Liao, S. [2020] “ On the risks of using double precision in numerical simulations of spatio-temporal chaos,” J. Comp. Phys.418, 109629. · Zbl 07506180
[19] Kaplan, J. L. & Yorke, J. A. [1979] “ Preturbulence: A regime observed in a fluid flow model of Lorenz,” Commun. Math. Phys.67, 93-108. · Zbl 0443.76059
[20] Lai, Y.-C. & Tél, T. [2011] Transient Chaos: Complex Dynamics on Finite Time Scales, Vol. 173 (Springer Science & Business Media). · Zbl 1218.37005
[21] Leitão, J. C., Lopes, J. V. P. & Altmann, E. G. [2013] “ Monte-Carlo sampling in fractal landscapes,” Phys. Rev. Lett.110, 220601.
[22] Li, J., Zeng, Q. & Chou, J. [2001] “ Computational uncertainty principle in nonlinear ordinary differential equations,” Sci. China Technol. Sci.44, 55-74. · Zbl 1232.65115
[23] Li, X. & Liao, S. [2017] “ More than six hundred new families of Newtonian periodic planar collisionless three-body orbits,” Sci. China Phys. Mech.60, 129511.
[24] Li, X., Jing, Y. & Liao, S. [2018] “ Over a thousand new periodic orbits of a planar three-body system with unequal masses,” Publ. Astron. Soc. Jpn. Nihon Tenmon Gakkai70, 64.
[25] Li, X. & Liao, S. [2019] “ Collisionless periodic orbits in the free-fall three-body problem,” New Astron.70, 22-26.
[26] Liao, S. [2008] “ On the reliability of computed chaotic solutions of non-linear differential equations,” Tellus A61, 550-564.
[27] Liao, S. & Wang, P. [2014] “ On the mathematically reliable long-term simulation of chaotic solutions of Lorenz equation in the interval [0, 10000],” Sci. China Phys. Mech.57, 330-335.
[28] Liao, S. [2017] “ On the clean numerical simulation (CNS) of chaotic dynamic systems,” J. Hydrodynam. B29, 729-747.
[29] Lin, Z., Wang, L. & Liao, S. [2017] “ On the origin of intrinsic randomness of Rayleigh-Bénard turbulence,” Sci. China Phys. Mech.60, 1-13.
[30] Lorenz, E. N. [1963] “ Deterministic nonperiodic flow,” J. Atmos. Sci.20, 130-141. · Zbl 1417.37129
[31] Lorenz, E. N. [1989] “ Computational chaos — A prelude to computational instability,” Physica D35, 299-317. · Zbl 0708.34043
[32] Lorenz, E. N. [2006] “ Computational periodicity as observed in a simple system,” Tellus A58, 549-557.
[33] Moresco, P. & Dawson, S. P. [1999] “ The pim-simplex method: An extension of the pim-triple method to saddles with an arbitrary number of expanding directions,” Physica D126, 38-48. · Zbl 0955.37055
[34] Nusse, H. E. & Yorke, J. A. [1989] “ A procedure for finding numerical trajectories on chaotic saddles,” Physica D36, 137-156. · Zbl 0728.58027
[35] Poincaré, H. [1890] “ Sur le problème des trois corps et les équations de la dynamique,” Acta Math.13, A3-A270. · JFM 22.0907.01
[36] Qin, S. & Liao, S. [2020] “ Influence of numerical noises on computer-generated simulation of spatio-temporal chaos,” Chaos Solit. Fract.136, 109790. · Zbl 1489.65163
[37] Rackauckas, C. & Nie, Q. [2017] “ Differential equations. jl — A performant and feature-rich ecosystem for solving differential equations in Julia,” J. Open Res. Softw.5.
[38] Sauer, T. & Yorke, J. A. [1991] “ Rigorous verification of trajectories for the computer simulation of dynamical systems,” Nonlinearity4, 961. · Zbl 0736.58032
[39] Sauer, T. D. [2002] “ Shadowing breakdown and large errors in dynamical simulations of physical systems,” Phys. Rev. E65, 036220.
[40] Sweet, D., Nusse, H. E. & Yorke, J. A. [2001] “ Stagger-and-step method: Detecting and computing chaotic saddles in higher dimensions,” Phys. Rev. Lett.86, 2261.
[41] Teixéira, J., Reynolds, C. A. & Judd, K. [2007] “ Time step sensitivity of nonlinear atmospheric models: Numerical convergence, truncation error growth, and ensemble design,” J. Atmos. Sci.64, 175-189.
[42] Yorke, J. A. & Yorke, E. D. [1979] “ Metastable chaos: The transition to sustained chaotic behavior in the Lorenz model,” J. Stat. Phys.21, 263-277.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.