×

Exploring chaotic attractors in nonlinear dynamical system under fractal theory. (English) Zbl 1448.94005

Summary: This paper introduces a new method to exploit chaotic attractors of nonlinear dynamics. The method decreases both the correlation and the noise of samples while preserves chaotic characteristics of samples in real time applications. The fractal prediction method is used to compressive sensing method in order to concentrate the sparse data on a trajectory. The proposed method can be applied to chaotic noise reduction, signal compression, and object’s movement synthesis in video. The experimental results indicate that the proposed method outperforms other state-of-the-art methods. Moreover, the results demonstrate that the chaotic extraction method is most effective to represent a chaotic dynamics of nonlinear time series for signal processing.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI

References:

[1] Abdechiri, M., Faez, K., Amindavar, H., & Bilotta, E. (2017a). The chaotic dynamics of high-dimensional systems. Nonlinear Dynamics, 87(4), 2597-2610. · doi:10.1007/s11071-016-3213-3
[2] Abdechiri, M., Faez, K., Amindavar, H., & Bilotta, E. (2017b). Chaotic target representation for robust object tracking. Signal Processing: Image Communication, 54, 23-35.
[3] Abdechiri, M., Faez, K., & Amindavar, H. (2017c). Visual object tracking with online weighted chaotic multiple instance learning. Neurocomputing, 247, 16-30. · doi:10.1016/j.neucom.2017.03.032
[4] Abdechiri, M., Faez, K., & Bahrami, H. (2010). Neural network learning based on chaotic imperialist competitive algorithm. In 2010 2nd international workshop on Intelligent systems and applications (ISA) (pp. 1-5). IEEE.
[5] Alikhani Koupaei, J., & Hosseini, S. M. M. (2015). A new hybrid algorithm based on chaotic maps for solving systems of nonlinear equations. Chaos, Solitons and Fractals, 81, 233-245. · Zbl 1355.49028 · doi:10.1016/j.chaos.2015.09.027
[6] Alikhani Koupaei, J., Hosseini, S. M. M., & Ghaini, F. M. (2016). A new optimization algorithm based on chaotic maps and golden section search method. Engineering Applications of Artificial Intelligence, 50, 201-214. · doi:10.1016/j.engappai.2016.01.034
[7] Asif, M. S., & Romberg, J. (2014). Sparse recovery of streaming signals using-homotopy. IEEE Transactions on Signal Processing, 62(16), 4209-4223. · Zbl 1394.94053 · doi:10.1109/TSP.2014.2328981
[8] Bahrami, H., Faez, K., & Abdechiri, M. (2010). Imperialist competitive algorithm using chaos theory for optimization (CICA). In 2010 12th international conference on Computer modelling and simulation (UKSim) (pp. 98-103). IEEE.
[9] Basharat, A., & Shah, M. (2009). Time series prediction by chaotic modeling of nonlinear dynamical systems. In 2009 IEEE 12th international conference on computer vision (pp. 1941-1948). IEEE.
[10] Chen, D., Liu, C., Wu, C., Liu, Y., Ma, X., & You, Y. (2012a). A new fractional-order chaotic system and its synchronization with circuit simulation. Circuits, Systems, and Signal Processing, 31(5), 1599-1613. · doi:10.1007/s00034-012-9408-z
[11] Chen, D. Y., Shi, L., Chen, H. T., & Ma, X. Y. (2012b). Analysis and control of a hyperchaotic system with only one nonlinear term. Nonlinear Dynamics, 67(3), 1745-1752. · doi:10.1007/s11071-011-0102-7
[12] Chen, D. Y., Wu, C., Liu, C. F., Ma, X. Y., You, Y. J., & Zhang, R. F. (2012c). Synchronization and circuit simulation of a new double-wing chaos. Nonlinear Dynamics, 67(2), 1481-1504. · Zbl 1256.94082 · doi:10.1007/s11071-011-0083-6
[13] Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289-1306. · Zbl 1288.94016 · doi:10.1109/TIT.2006.871582
[14] Du, H., & Smith, L. A. (2014). Pseudo-orbit data assimilation. Part I: The perfect model scenario. Journal of the Atmospheric Sciences, 71(2), 469-482. · doi:10.1175/JAS-D-13-032.1
[15] Farmer, M. E. (2007). A chaos theoretic analysis of motion and illumination in video sequences. Journal of Multimedia, 2(2), 53-64. · doi:10.4304/jmm.2.2.53-64
[16] Fertig, E. J., Harlim, J., & Hunt, B. R. (2007). A comparative study of 4D-VAR and a 4D ensemble Kalman filter: Perfect model simulations with Lorenz-96. Tellus A, 59(1), 96-100. · doi:10.1111/j.1600-0870.2006.00205.x
[17] Firouznia, M., Faez, K., Amindvar, H. R., Pantano, P., & Bilotta, E. (2017). Multi-step prediction method for robust object tracking. Digital Signal Processing, 70(2017), 94-104. · doi:10.1016/j.dsp.2017.07.024
[18] Gan, C. B., & Lei, H. (2011). A new procedure for exploring chaotic attractors in nonlinear dynamical systems under random excitations. Acta Mechanica Sinica, 27(4), 593-601. · Zbl 1270.70065 · doi:10.1007/s10409-011-0472-6
[19] Kayacan, E., Ulutas, B., & Kaynak, O. (2010). Grey system theory-based models in time series prediction. Expert Systems with Applications, 37(2), 1784-1789. · doi:10.1016/j.eswa.2009.07.064
[20] Lawrence, N. (2005). Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research, 6, 1783-1816. · Zbl 1222.68247
[21] Qaisar, S., Bilal, R. M., Iqbal, W., Naureen, M., & Lee, S. (2013). Compressive sensing: From theory to applications, a survey. Journal of Communications and networks, 15(5), 443-456. · doi:10.1109/JCN.2013.000083
[22] Sugihara, G., & Mayf, R. (1990). Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature, 344, 734-741.
[23] Tillmann, A. M., & Pfetsch, M. E. (2014). The computational complexity of the restricted isometry property, the nullspace property, and related concepts in compressed sensing. IEEE Transactions on Information Theory, 60(2), 1248-1259. · Zbl 1364.94170 · doi:10.1109/TIT.2013.2290112
[24] Tongue, B. H., & Gu, K. (1988). Interpolated cell mapping of dynamical systems. Journal of Applied Mechanics, 55(2), 461-466. · Zbl 0666.70019 · doi:10.1115/1.3173700
[25] Tsonis, A. A., & Elsner, J. B. (1992). Nonlinear prediction as a way of distinguishing chaos from random fractal sequences. Nature, 358, 217-220.
[26] Upadhyay, R. K., & Iyengar, S. R. (2013). Introduction to mathematical modeling and chaotic dynamics. Boca Raton: CRC Press. · Zbl 1302.00059 · doi:10.1201/b15317
[27] Wales, D. J. (1991). Calculating the rate of loss of information from chaotic time series by forecasting. Nature, 350, 485-488.
[28] Wang, X., & Wang, M. (2008). A hyperchaos generated from Lorenz system. Physica A: Statistical Mechanics and its Applications, 387(14), 3751-3758. · doi:10.1016/j.physa.2008.02.020
[29] Wang, X. Y., & Wang, M. J. (2007). Dynamic analysis of the fractional-order Liu system and its synchronization. Chaos: An Interdisciplinary. Journal of Nonlinear Science, 17(3), 033106. · Zbl 1163.37382
[30] Wright, S. J., Nowak, R. D., & Figueiredo, M. A. (2009). Sparse reconstruction by separable approximation. IEEE Transactions on Signal Processing, 57(7), 2479-2493. · Zbl 1391.94442 · doi:10.1109/TSP.2009.2016892
[31] Wu, J., Lu, J., & Wang, J. (2009). Application of chaos and fractal models to water quality time series prediction. Environmental Modelling and Software, 24(5), 632-636. · doi:10.1016/j.envsoft.2008.10.004
[32] Yang, J., & Zhang, Y. (2011). Alternating direction algorithms for \[\backslash ell_1\]\ell1-problems in compressive sensing. SIAM Journal on Scientific Computing, 33(1), 250-278. · Zbl 1256.65060 · doi:10.1137/090777761
[33] Yujun, N., Xingyuan, W., Mingjun, W., & Huaguang, Z. (2010). A new hyperchaotic system and its circuit implementation. Communications in Nonlinear Science and Numerical Simulation, 15(11), 3518-3524. · doi:10.1016/j.cnsns.2009.12.005
[34] Zhang, Y. Q., & Wang, X. Y. (2014a). A symmetric image encryption algorithm based on mixed linear-nonlinear coupled map lattice. Information Sciences, 273, 329-351. · doi:10.1016/j.ins.2014.02.156
[35] Zhang, Y. Q., & Wang, X. Y. (2014b). Spatiotemporal chaos in mixed linear-nonlinear coupled logistic map lattice. Physica A: Statistical Mechanics and Its Applications, 402, 104-118. · Zbl 1395.37028 · doi:10.1016/j.physa.2014.01.051
[36] Zhang, Y. Q., & Wang, X. Y. (2015). A new image encryption algorithm based on non-adjacent coupled map lattices. Applied Soft Computing, 26, 10-20. · doi:10.1016/j.asoc.2014.09.039
[37] Zhou, N., Zhang, A., Zheng, F., & Gong, L. (2014). Novel image compression-encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing. Optics and Laser Technology, 62, 152-160. · doi:10.1016/j.optlastec.2014.02.015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.