×

Chain recurrence, chain transitivity, Lyapunov functions and rigidity of Lagrangian submanifolds of optical hypersurfaces. (English) Zbl 1394.53083

In the first part of this article (Sections 2 and 3) the authors discuss strong chain recurrence and strong chain transitivity for flows on metric spaces and theirs characterization in terms of rigidity properties of Lipschitz Lyapunov functions. Let \(\Psi =\{\Psi _t\}_{t\in \mathbb{R}}\) be a continuous flow on the metric space \((X,d)\). A strong \((\epsilon , T)\)-chain from \(x\) to \(y\) is a finite sequence \((x_i, t_i)_{i=1,\dots,n}\), such that if \(t_i \leq T\) for every \(i\), \(x_1=x \) and \(x_{n+1}=y\), then \(\sum_{i=1}^n d(\Psi_{t_i}(x_i), x_{i+1})<\epsilon \). The flow \(\Psi\) is a strongly chain recurrent if for every \(x\in X\), every \(\epsilon >0\) and every \(T\geq 0\) there exists a strong \((\epsilon , T )\)-chain from \(x\) to \(x\). \(\Psi\) is strongly chain transitive if for every \(x,y\in X\), every \(\epsilon >0\) and every \(T\geq 0\) there exists a strong \((\epsilon , T )\)-chain from \(x\) to \(x\).
The authors prove the following theorem: Let \(\Psi\) be a flow on a metric space \((X,d)\) such that \(\Psi _t\) is Lipschitz continuous for every \(t\geq 0\) uniformly for \(t\) in compact subsets of \([0,+\infty )\). Then:
i) \(\Psi\) is strongly chain recurrent if and only if every Lipschitz continuous Lyapunov function is a first integral (Theorem 2.2 from Section 2).
ii) \(\Psi\) is strongly chain transitive if and only if every Lipschitz continuous Lyapunov function is constant (consequence of Propositions 3.2 and 3.3 in Section 3).
In the second part of the article, the authors use the previously established characterizations to give a new proof of a theorem proven by G. P. Paternain et al. [Mosc. Math. J. 3, No. 2, 593–619 (2003; Zbl 1048.53058)].
Let \(T^* M\) be the cotangent bundle of a closed manifold \(M\) with its standard Liouville and sympletic forms and let \(H:T^* M\rightarrow \mathbb{R}\) be fiberwise superlinear and its fiberwise second differential be everywhere positive definite. Then \(H\) is said to be Tonelli Hamiltonian. Let \(\Sigma:= {z\in T^* M| H(z)=c}\) be a non-empty regular level set of \(H\) such that \(\pi(\Sigma) = M\), where \(\pi\) is the canonical projection from the cotangent bundle. \(\Sigma\) is called an optical hypersurface. G. P. Paternain et al. [Mosc. Math. J. 3, No. 2, 593–619 (2003; Zbl 1048.53058)] proved: Let \( \Sigma \) be an optical hypersurface as above. Let \(\Lambda\) be an element of \(\mathcal{L}(T^*M)\) (the set of closed Lagrangian submanifolds \(\Lambda\) of \(T^*M\)) contained in \(\Sigma\). Assume that the restricted Hamiltonian flow \(\Psi^H|_{\mathbb{R}\times \Lambda}:\mathbb{R}\times \Lambda \rightarrow \Lambda\) is strongly chain recurrent. Then, if \(K\) is an element of \(\mathcal{L}(T^*M)\) contained in \(\bar{U_\Sigma}=\{z\in T^* M| H(z)\leq c\} \) and having the same Liouville class as \(\Lambda\), then necessarily \(K=\Lambda\).
The authors give a new proof of this theorem using graph selectors, Lipschitz functions on \(M\) with specific properties whose existence is proved in Theorem 5.2.
In Section 6 it is proved that under the conditions of Paternain et al. [loc. cit.]. If \(\{\Lambda_r\}_{r\in[0,1]}\subset \mathcal{L}(T^*M)\) is an analytic one-parameter family of smooth Lagrangian submanifolds having the same Liouville class of \(\Lambda\), such that \(\Lambda _0=\Lambda\) and \(\Lambda_r \subset U^c_\Sigma \) for all \(r\in[0,1]\), then \(\Lambda_r=\Lambda\) for all \(r\in [0,1].\)

MSC:

53D12 Lagrangian submanifolds; Maslov index
54E35 Metric spaces, metrizability

Citations:

Zbl 1048.53058

References:

[1] Akin, E.: The General Topology of Dynamical Systems. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (1993) · Zbl 0781.54025
[2] Arnaud, M.-C.: On a theorem due to Birkhoff. Geom. Funct. Anal. 20, 1307-1316 (2010) · Zbl 1216.37020 · doi:10.1007/s00039-010-0091-6
[3] Chaperon, M.: Lois de conservation et géométrie symplectique. C. R. Acad. Sci. Paris Sér. I Math 312, 345-348 (1991) · Zbl 0721.58019
[4] Conley, C.: Isolated Invariant Sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38. American Mathematical Society, Providence, RI (1978) · Zbl 0397.34056 · doi:10.1090/cbms/038
[5] Conley, C.: The gradient structure of a flow. Ergodic Theory Dynam. Syst. 8*, 11-26 (1988) · Zbl 0687.58033 · doi:10.1017/S0143385700009305
[6] Contreras, G., Iturriaga, R., Paternain, G.P., Paternain, M.: Lagrangian graphs, minimizing measures and Mañé’s critical values. Geom. Funct. Anal. 8(5), 788-809 (1998) · Zbl 0920.58015 · doi:10.1007/s000390050074
[7] Contreras, G., Iturriaga, R.: Global Minimizers of Autonomous Lagrangians, 22 Colòquio Brasileiro de Matemàtica. Instituto de Matemàtica Pura e Aplicada (IMPA), Rio de Janeiro (1999) · Zbl 0957.37065
[8] Easton, R.: Chain transitivity and the domain of influence of an invariant set, the structure of attractors in dynamical systems. In: Proceedings of Conference on North Dakota State University, Fargo, ND, vol. 668. Springer, Berlin, pp. 95-102 (1978) · Zbl 0393.54027
[9] Fathi, A.: Weak Kam Theorem in Lagrangian Dynamics. Cambrige University Press, Cambrige (2002)
[10] Fathi, A., Siconolfi, A.: Existence of \[C^1\] C1 critical subsolutions of the Hamilton-Jacobi equation. Invent. Math. 155(2), 363-388 (2004) · Zbl 1061.58008 · doi:10.1007/s00222-003-0323-6
[11] Fathi, A., Figalli, A., Rifford, L.: On the Hausdorff dimension of the Mather quotient. Commun. Pure Appl. Math. 62, 445-500 (2009) · Zbl 1172.37018 · doi:10.1002/cpa.20250
[12] Fathi, A., Giuliani, A., Sorrentino, A.: Uniqueness of invariant Lagrangian graphs in a homology or a cohomology class. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) VIII, 659-680 (2009) · Zbl 1192.37086
[13] Fathi, A., Pageault, P.: Aubry-Mather theory for homeomorphisms. Ergodic Theory Dynam. Syst. 35, 1187-1207 (2015) · Zbl 1343.37012 · doi:10.1017/etds.2013.107
[14] Hurley, M.: Chain recurrence, semiflows, and gradients. J. Dyn. Differ. Equ. 7, 437-456 (1995) · Zbl 0832.34041 · doi:10.1007/BF02219371
[15] Oh, Y.G.: Symplectic topology as the topology of action functional. I—relative floer theory on the cotangent bundle. J. Differ. Geom. 46, 499-577 (1997) · Zbl 0926.53031 · doi:10.4310/jdg/1214459976
[16] Pageault, P.: Fonctions de Lyapunov : une approche KAM faible. Ph.D. thesis, Université de Lyon - École Normale Supérieure de Lyon (2011) · Zbl 1048.53058
[17] Pageault, P.: Functions whose set of critical points is an arc. Math. Z. 275, 1121-1134 (2013) · Zbl 1310.26013 · doi:10.1007/s00209-013-1173-6
[18] Paternain, G.P., Polterovich, L., Siburg, K.F.: Boundary rigidity for Lagrangian submanifolds, non-removable intersections, and Aubry-Mather theory. Mosk. Math. J. 3, 593-619 (2003) · Zbl 1048.53058
[19] Siburg, K.F.: The Principle of Least Action in Geometry and Dynamics. Springer, Berlin (2004) · Zbl 1060.37048 · doi:10.1007/b97327
[20] Sorrentino, A.: Action-minimizing methods in Hamiltonian dynamics: an introduction to Aubry-Mather theory. Princeton University Press, Princeton (2015) · Zbl 1373.37002 · doi:10.1515/9781400866618
[21] Walters, P.: An Introduction to Ergodic Theory. Springer, Berlin (1982) · Zbl 0475.28009 · doi:10.1007/978-1-4612-5775-2
[22] Whitney, H.: A function not constant on a connected set of critical points. Duke Math. J. 1, 514-517 (1935) · Zbl 0013.05801 · doi:10.1215/S0012-7094-35-00138-7
[23] Zheng, Z.: Chain transitivity and Lipschitz ergodicity. Nonlinear Anal. 34, 733-744 (1998) · Zbl 0946.37001 · doi:10.1016/S0362-546X(97)00581-6
[24] Zheng, Z.: Attractor, chain recurrent set and limit set of flow. Sci. China (Ser. A) 43, 244-251 (2000) · Zbl 0984.37014 · doi:10.1007/BF02897847
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.