×

A semi-implicit finite element method for viscous lipid membranes. (English) Zbl 1349.76260

Summary: A finite element formulation to approximate the behavior of lipid membranes is proposed. The mathematical model incorporates tangential viscous stresses and bending elastic forces, together with the inextensibility constraint and the enclosed volume constraint. The membrane is discretized by a surface mesh made up of planar triangles, over which a mixed formulation (velocity-curvature) is built based on the viscous bilinear form (Boussinesq-Scriven operator) and the Laplace-Beltrami identity relating position and curvature. A semi-implicit approach is then used to discretize in time, with piecewise linear interpolants for all variables. Two stabilization terms are needed: The first one stabilizes the inextensibility constraint by a pressure-gradient-projection scheme [R. Codina and J. Blasco, Comput. Methods Appl. Mech. Eng. 143, No. 3–4, 373–391 (1997; Zbl 0893.76040)], the second couples curvature and velocity to improve temporal stability, as proposed by E. Bänsch [Numer. Math. 88, No. 2, 203–235 (2001; Zbl 0985.35060)]. The volume constraint is handled by a Lagrange multiplier (which turns out to be the internal pressure), and an analogous strategy is used to filter out rigid-body motions. The nodal positions are updated in a Lagrangian manner according to the velocity solution at each time step. An automatic remeshing strategy maintains suitable refinement and mesh quality throughout the simulation. Numerical experiments show the convergent and robust behavior of the proposed method. Stability limits are obtained from numerous relaxation tests, and convergence with mesh refinement is confirmed both in the relaxation transient and in the final equilibrium shape. Virtual tweezing experiments are also reported, computing the dependence of the deformed membrane shape with the tweezing velocity (a purely dynamical effect). For sufficiently high velocities, a tether develops which shows good agreement, both in its final radius and in its transient behavior, with available analytical solutions. Finally, simulation results of a membrane subject to the simultaneous action of six tweezers illustrate the robustness of the method.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
76Z05 Physiological flows
82-08 Computational methods (statistical mechanics) (MSC2010)
74L15 Biomechanical solid mechanics
92C37 Cell biology

Software:

MUMPS; Gerris

References:

[1] Alberts, B.; Bray, D.; Hopkin, K.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P., Essential Cell Biology (2009), Garland Publishing: Garland Publishing New York
[2] Canham, P., The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, J. Theor. Biol., 26, 61-81 (1970)
[3] Seifert, U., Configurations of fluid membranes and vesicles, Adv. Phys., 46, 13-137 (1997)
[4] Dziuk, G., Computational parametric Willmore flow, Numer. Math., 111, 55-80 (2008) · Zbl 1158.65073
[5] Rusu, R., An algorithm for the elastic flow of surfaces, Interfaces Free Bound., 7, 229-239 (2005) · Zbl 1210.35149
[6] Feng, F.; Klug, W., Finite element modeling of lipid bilayer membranes, J. Comput. Phys., 220, 394-408 (2006) · Zbl 1102.92011
[7] Barrett, J.; Garcke, H.; Nürnberg, R., Parametric approximation of Willmore flow and related geometric evolution equations, SIAM J. Sci. Comput., 31, 225-253 (2008) · Zbl 1186.65133
[8] Bonito, A.; Nochetto, R.; Pauletti, M., Parametric FEM for geometric biomembranes, J. Comput. Phys., 229, 3171-3188 (2010) · Zbl 1307.76049
[9] Bonito, A.; Nochetto, R.; Pauletti, M., Dynamics of biomembranes: effect of the bulk fluid, Math. Model. Nat. Phenom., 6, 25-43 (2011) · Zbl 1231.92014
[10] Elliott, C.; Stinner, B., Modeling and computation of two phase geometric biomembranes using surface finite elements, J. Comput. Phys., 229, 6585-6612 (2010) · Zbl 1425.74323
[11] Harland, C.; Bradley, M.; Parthasarathy, R., Phospholipid bilayers are viscoelastic, Proc. Natl. Acad. Sci. USA, 107, 19146-19150 (2010)
[12] Harland, C.; Bradley, M.; Parthasarathy, R., Retraction, Proc. Natl. Acad. Sci. USA, 108, 14705 (2011)
[13] Arroyo, M.; DeSimone, A., Relaxation dynamics of fluid membranes, Phys. Rev. E, 79, 031915 (2009), (17 pp.)
[14] Scriven, L., Dynamics of a fluid interface: equations of motion for Newtonian surface fluids, Chem. Eng. Sci., 12, 98-108 (1960)
[15] Arroyo, M.; DeSimone, A.; Heltai, L., The role of membrane viscosity in the dynamics of fluid membranes (2010), Tech. rep.
[16] Rahimi, M.; Arroyo, M., Shape dynamics, lipid hydrodynamics, and the complex viscoelasticity of bilayer membranes, Phys. Rev. E, 86, 011932 (2012), (15 pp.)
[17] Tasso, I.; Buscaglia, G., A finite element method for viscous membranes, Comput. Methods Appl. Mech. Eng., 255, 226-237 (2013) · Zbl 1297.74064
[18] Ashkin, A., Optical trapping and manipulation of neutral particles using lasers, Proc. Natl. Acad. Sci. USA, 94, 4853-4860 (1997)
[19] Pontes, B.; Ayala, Y.; Fonseca, A. C.C.; Romão, L. F.; Amaral, R. F.; Salgado, L. T.; Lima, F. R.; Farina, M.; Viana, N. B.; Moura-Neto, V.; Nussenzveig, H. M., Membrane elastic properties and cell function, PLoS ONE, 8, e67708 (2013), (13 pp.)
[20] Lee, H.; Peterson, E.; Phillips, R.; Klug, W.; Wiggins, P., Membrane shape as a reporter for applied forces, Proc. Natl. Acad. Sci. USA, 105, 19253-19257 (2008)
[21] Smith, A.; Sackmann, E.; Seifert, U., Pulling tethers from adhered vesicles, Phys. Rev. Lett., 92, 208101 (2004), (4 pp.)
[22] Waugh, R., Surface viscosity measurements from large bilayer vesicle tether formation I: analysis, Biophys. J., 38, 19-27 (1982)
[23] Božič, B.; Svetina, S.; Žekš, B., Theoretical analysis of the formation of membrane microtubes on axially strained vesicles, Phys. Rev. E, 55, 5834-5842 (1997)
[24] Waugh, R., Surface viscosity measurements from large bilayer vesicle tether formation II: experiments, Biophys. J., 38, 28-37 (1982)
[25] Buscaglia, G.; Ausas, R., Variational formulations for surface tension, capillarity and wetting, Comput. Methods Appl. Mech. Eng., 200, 45-46, 3011-3025 (2011) · Zbl 1230.76047
[26] Biria, A.; Maleki, M.; Fried, E., Continuum theory for the edge of an open lipid bilayer, Adv. Appl. Mech., 46, 1-68 (2013)
[27] Boussinesq, J., Sur l’existence d’une viscosité superficielle, dans le mince couche de transition separant un liquide d’une autre fluide contigu, Ann. Chim. Phys., 29, 349-357 (1913) · JFM 44.0914.03
[28] Gross, S.; Reusken, A., Numerical Methods for Two-Phase Incompressible Flows, Springer Ser. Comput. Math., vol. 40 (2011) · Zbl 1222.76002
[29] Rangamani, P.; Agrawal, A.; Mandadapu, K.; Oster, G.; Steigmann, D., Interaction between surface shape and intra-surface viscous flow on lipid membranes, Biomech. Model. Mechanobiol., 12, 833-845 (2013)
[30] Helfrich, W., Elastic properties of lipid bilayers - theory and possible experiments, Z. Nat.forsch., C J. Biosci., 28, 693-703 (1973)
[31] Willmore, T., Riemannian Geometry (1993), Clarendon Press: Clarendon Press Oxford · Zbl 0797.53002
[32] Evans, E.; Yeung, A., Hidden dynamics in rapid changes of bilayer shape, Chem. Phys. Lipids, 73, 39-56 (1994)
[33] Codina, R.; Blasco, J., A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation, Comput. Methods Appl. Mech. Eng., 143, 373-391 (1997) · Zbl 0893.76040
[34] Buscaglia, G.; Basombrío, F.; Codina, R., Fourier analysis of an equal-order incompressible flow solver stabilized by pressure-gradient projection, Int. J. Numer. Methods Fluids, 34, 65-92 (2000) · Zbl 0985.76049
[35] Codina, R.; Blasco, J.; Buscaglia, G. C.; Huerta, A., Implementation of a stabilized finite element formulation for the incompressible Navier-Stokes equations based on a pressure gradient projection, Int. J. Numer. Methods Fluids, 37, 419-444 (2001) · Zbl 1074.76032
[36] Bänsch, E., Finite element discretization of the Navier-Stokes equations with a free capillary surface, Numer. Math., 88, 203-235 (2001) · Zbl 0985.35060
[37] Löhner, R., Regridding surface triangulations, J. Comput. Phys., 126, 1-10 (1996) · Zbl 0862.65010
[38] Zavattieri, P.; Dari, E.; Buscaglia, G., Optimization strategies in unstructured mesh generation, Int. J. Numer. Methods Eng., 39, 2055-2071 (1996) · Zbl 0881.76079
[39] Buscaglia, G.; Dari, E., Anisotropic mesh optimization and its application in adaptivity, Int. J. Numer. Methods Eng., 40, 4119-4136 (1997) · Zbl 0899.76264
[40] Veerapaneni, S.; Raj, R.; Biros, G.; Purohit, P., Analytical and numerical solutions for shapes of quiescent two-dimensional vesicles, Int. J. Non-Linear Mech., 44, 3, 257-262 (2009)
[41] Ganesan, S.; Matthies, G.; Tobiska, L., On spurious velocities in incompressible flow problems with interfaces, Comput. Methods Appl. Mech. Eng., 196, 1193-1202 (2007) · Zbl 1173.76338
[42] Gross, S.; Reusken, A., An extended pressure finite element space for two-phase incompressible flows with surface tension, J. Comput. Phys., 224, 40-58 (2007) · Zbl 1261.76015
[43] Reusken, A., Analysis of an extended pressure finite element space for two-phase incompressible flows, Comput. Vis. Sci., 11, 293-305 (2008) · Zbl 1522.76044
[44] Popinet, S., An accurate adaptive solver for surface-tension-driven interfacial flows, J. Comput. Phys., 228, 5838-5866 (2009) · Zbl 1280.76020
[45] Ausas, R.; Sousa, F.; Buscaglia, G., An improved finite element space for discontinuous pressures, Comput. Methods Appl. Mech. Eng., 199, 1019-1031 (2010) · Zbl 1227.76025
[46] Fygenson, D.; Marko, J.; Libchaber, A., Mechanics of microtubule-based membrane extension, Phys. Rev. Lett., 79, 4497-4500 (1997)
[47] Staykova, M.; Arroyo, M.; Rahimi, M.; Stone, H., Confined bilayers passively regulate shape and stress, Phys. Rev. Lett., 110, 028101 (2013), (5 pp.)
[48] Amestoy, P.; Duff, I.; Koster, J.; L’Excellent, J., A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23, 15-41 (2001) · Zbl 0992.65018
[49] Amestoy, P.; Guermouche, A.; L’Excellent, J.; Pralet, S., Hybrid scheduling for the parallel solution of linear systems, Parallel Comput., 32, 136-156 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.