×

Surface reactions on the cytoplasmatic membranes – mathematical modeling of reaction and diffusion systems in a cell. (English) Zbl 1301.92022

Summary: A human cell consists schematically of an outer cellular membrane, a cytoplasm containing a large number of organelles (mitochondria, endoplasmatic reticulum etc.), a nuclear membrane and finally the cellular nucleus containing DNA. The organelles create a complex and dense system of membranes or sub-domains throughout the cytoplasm. The mathematical description leads to a system of reaction-diffusion equations in a complex geometrical domain, dominated by thin membranous structures with similar physical and chemical properties. In a previous model, we considered only spatially distributed reaction and diffusion processes. However, from experiments it is known that membrane bound proteins play an important role in the metabolism of certain substances. In the present paper we develop a homogenization strategy which includes both volume and surface reactions. The homogenized system is a reaction-diffusion system in the cytoplasm which is coupled to the surrounding cell components by correspondingly modified transfer conditions. The approach is verified by application to a system modeling the cellular uptake and intracellular dynamics of carcinogenic polycyclic aromatic hydrocarbons.

MSC:

92C37 Cell biology
35K57 Reaction-diffusion equations
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure

Software:

E-DRAGON; Matlab; COMSOL
Full Text: DOI

References:

[1] Dreij, K.; Chaudhry, Q. A.; Jernstrom, B.; Morgenstern, R.; Hanke, M., A method for efficient calculation of diffusion and reactions of lipophilic compounds in complex cell geometry, PLoS One, 6, e23128 (2011)
[2] Hayes, J.; Pulford, D., The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance, Crit. Rev. Biochem. Mol. Biol., 30, 6, 445-600 (1995)
[3] Guengerich, F.; Shimada, T., Activation of procarcinogens by human cytochrome P450 enzymes, Mutat. Res., 400, 201-213 (1998)
[4] Novak, I.; Gao, F.; Choi, Y.; Resasco, D.; Schaff, J.; Slepchenko, B., Diffusion on a curved surface coupled to diffusion in the volume: applications to cell biology, J. Comput. Phys., 226, 2, 1271-1290 (2007) · Zbl 1121.92026
[5] Comsol, A. B., Boat reactor for low pressure chemical vapor deposition, (Chemical Engineering Module (2011), Model Library, Comsol AB)
[6] Comsol, A. B., Surface reactions in a biosensor, (Chemical Reaction Engineering Module (2011), Model Library, Comsol AB)
[7] He, X.; Li, N.; Goldstein, B., Lattice Boltzmann simulation with surface chemical reaction, Mol. Simul., 25, 145-156 (2000) · Zbl 0991.76063
[8] Kang, Q.; Zhang, D.; Chen, S.; He, X., Lattice Boltzmann simulation of chemical dissolution in porous media, Phys. Rev. E, 65, 036318 (2002)
[9] Krämer, S.; Lombardi, D.; Promorac, A.; Thomae, A.; Wunderli-Allenspach, H., Lipid-bilayer permeation of drug-like compounds, Chem. Biodivers., 6, 1900-1916 (2009)
[10] Thomae, A.; Koch, T.; Panse, C.; Wunderli-Allenspach, H.; Krämer, S., Comparing the lipid membrane affinity and permeation of drug-like acids: the intriguing effects of cholesterol and charged lipids, Pharm. Res., 24, 1457-1472 (2007)
[11] Oren, I.; Fleishman, S.; Kessel, A.; Ben-Tal, N., Free dissusion of steroid hormones across biomembranes: a simplex search with implicit solvent model calculations, Biophys. J., 87, 768-779 (2004)
[12] Comsol, A. B., Transport and adsorption, (Chemical Reaction Engineering Module (2011), Comsol AB)
[13] De Prisco, G.; Shan, X., Mass transport/dissusion and surface reaction process with lattice Boltzmann, Commun. Comput. Phys., 9, 1362-1374 (2011)
[14] Hamilton, J., Fast flip-flop of cholesterol and fatty acids in membranes: Implications for membrane transport proteins, Curr. Opin. Lipidol, 14, 263-271 (2003)
[15] Plant, A.; Pownall, H.; Smith, L., Transfer of polycyclic aromatic hydrocarbons between model membranes: Relation to carcinogenicity, Chem. Biol. Interact., 44, 237-246 (1983)
[16] Plant, A.; Knapp, R.; Smith, L., Mechanism and rate of permeation of cells by polycyclic aromatic hydrocarbons, J. Biol. Chem., 262, 2514-2519 (1987)
[19] Gelboin, H., Benzo[a]pyrene metabolism, activation, and carcinogenesis: role and regulation of mixed-function oxidases and related enzymes, Physiol. Rev., 60, 1107-1166 (1980)
[20] Luch, A.; Schober, W.; Soballa, V.; Raab, G.; Greim, H.; Jacob, J.; Doehmer, J.; Seidel, A., Metabolic activation of dibenzo[a, l]pyrene by human cytochrome P450 1A1 and 1B1 expressed in V79 Chinese hamster cells, Chem. Res. Toxicol., 12, 353-364 (1999)
[21] Buters, J.; Sakai, S.; Richter, T.; Pineau, T.; Alexander, D.; Savas, U.; Doehmer, J.; Ward, J.; Jefcoate, C.; Gonzalez, F., Cytochrome P450 CYP1B1 determines susceptibility to 7,12-dimethylbenz[a]anthracene-induced lymphomas, Proc. Natl. Acad. Sci. USA, 96, 1977-1982 (1999)
[22] Buters, J.; Mahadevan, B.; Quintanilla-Martinez, L.; Gonzalez, F.; Greim, H.; Baird, W.; Luch, A., Cytochrome P450 1B1 determines susceptibility to dibenzo[a, l]pyrene-induced tumor formation, Chem. Res. Toxicol., 15, 1127-1135 (2002)
[23] Shimizu, Y.; Nakatsuru, Y.; Ichinose, M.; Takahashi, Y.; Kume, H.; Mimura, J.; Fujii-Kuriyama, Y.; Ishikawa, T., Benzo[a]pyrene carcinogenicity is lost in mice lacking the aryl hydrocarbon receptor, Proc. Natl. Acad. Sci. USA, 97, 779-782 (2000)
[24] Seidel, A.; Friedberg, T.; Löllmann, B.; Schwierzok, A.; Funk, M.; Frank, H.; Holler, R.; Oesch, F.; Glatt, H., Detoxification of optically active bay- and fjord-region polycyclic aromatic hydrocarbon dihydrodiol epoxides by human glutathione transferase P1-1 expressed in Chinese hamster V79 cells, Carcinogenesis, 19, 1975-1981 (1998)
[25] Hu, X.; Herzog, C.; Zimniak, P.; Singh, S., Differential protection against benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide-induced DNA damage in HepG2 cells stably transfected with allelic variants of pi class human glutathione S-transferase, Cancer Res., 59, 10, 2358-2362 (1999)
[26] Fields, W, R.; Morrow, C.; Doss, A, J.; Sundberg, K.; Jernström, B.; Townsend, A., Overexpression of stably transfected human glutathione S-transferase P1-1 protects against DNA damage by benzo[a]pyrene diol-epoxide in human T47D cells, Mol. Pharmacol., 54, 2, 298-304 (1998)
[27] Sundberg, K.; Dreij, K.; Seidel, A.; Jernström, B., Glutathione conjugation and DNA adduct formation of dibenzo[a,l]pyrene and benzo[a]pyrene diol epoxides in V79 cells stably expressing different human glutathione transferases, Chem. Res. Toxicol., 15, 2, 170-179 (2002)
[28] Kushman, M.; Kabler, S.; Fleming, M.; Ravoori, S.; Gupta, R. C.; Doehmer, J.; Morrow, C.; Townsend, A., Expression of human glutathione S-transferase P1 confers resistance to benzo[a]pyrene or benzo[a]pyrene-7,8-dihydrodiol mutagenesis, macromolecular alkylation and formation of stable N2-Gua-BPDE adducts in stably transfected V79MZ cells co-expressing hCYP1A1, Carcinogenesis, 28, 207-214 (2006)
[29] Kushman, M.; Kabler, S.; Ahmad, S.; Doehmer, J.; Morrow, C.; Townsend, A., Protective efficacy of hGSTM1-1 against B[a]P and \((+)\)- or \((-)-B\)[a]P-7,8-dihydrodiol cytotoxicity, mutagenicity, and macromolecular adducts in V79 cells coexpressing hCYP1A1, Toxicol. Sci., 99, 51-57 (2007)
[30] Kushman, M.; Kabler, S.; Ahmad, S.; Doehmer, J.; Morrow, C. S.; Townsend, A., Cytotoxicity and mutagenicity of dibenzo[a,l]pyrene and \((+ / -)\)-dibenzo[a,l]pyrene-11,12-dihydrodiol in V79MZ cells co-expressing either hCYP1A1 or hCYP1B1 together with human glutathione-S-transferase A1, Mutat. Res., 624, 80-87 (2007)
[31] Mackay, D.; Paterson, S., Evaluating the multimedia fate of organic chemicals: a level III fugacity model, Environ. Sci. Technol., 25, 427-436 (1991)
[32] EPA, Soil screening Guidance: Technical background documents, Tech. Rep. EPA/540/R95/128 (1996), US EPA: US EPA Washington, DC
[33] Vanderkooi, J.; Callis, J., Pyrene. A probe of lateral diffusion in the hydrophobic region of membranes, Biochem., 13, 19, 4000-4006 (1974)
[34] Jernström, B.; Funk, M.; Frank, H.; Mannervik, B.; Seidel, A., Glutathione S-transferase A1-1-catalysed conjugation of bay and fjord region diol epoxides or polycyclic aromatic hydrocarbons with glutathione, Carcinogenesis, 17, 7, 1491-1498 (1996)
[35] Sundberg, K.; Widersten, M.; Seidel, A.; Mannervik, B.; Jernström, B., Glutathione conjugation of bay- and fjord-region diol epoxides of polycyclic aromatic hydrocarbons by glutathione transferases M1-1 and P1-1, Chem. Res. Toxicol., 10, 11, 1221-1227 (1997)
[36] Verkman, A., Solute and macromolecule diffusion in cellular aqueous compartments, Trends Biochem. Sci., 27, 1, 27-33 (2002)
[37] Kisselev, P.; Schwarz, D.; Platt, K.; Schunck, W.; Roots, I., Epoxidation of benzo[a]pyrene-7,8-dihydrodiol by human CYP1A1 in reconstituted membranes. Effects of charge and nonbilayer phase propensity of the membrane, Eur. J. Biochem., 269, 7, 1799-1805 (2002)
[38] Ellis, R., Macromolecular crowding: An important but neglected aspect of the intracellular environment, Curr. Opin. Struct. Biol., 11, 1, 114-119 (2001)
[39] Tetko, I.; Gasteiger, J.; Todeschini, R.; Mauri, A.; Livingstone, D.; Ertl, P.; Palyulin, V.; Radchenko, E.; Zefirov, N.; Makarenko, A.; Tanchuk, V.; Prokopenko, V., Virtual computational chemistry laboratory—design and description, J. Comput. Aid. Mol. Des., 19, 453-463 (2005)
[41] Weibel, E.; Stäubli, W.; Gnägi, H.; Hess, F., Correlated morphometric and biochemical studies on the liver cell, J. Cell Biol., 42, 68-91 (1969)
[42] Blouin, A.; Bolender, R.; Weibel, E., Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study, J. Cell Biol., 72, 2, 441-455 (1977)
[43] Luby-Phelps, K., Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area, Int. Rev. Cytol., 192, 189-221 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.