×

Chiral flows can induce neck formation in viscoelastic surfaces. (English) Zbl 07866304

Summary: The cell cortex is an active viscoelastic self-deforming sheet at the periphery of animal cells. It constricts animal cells during cell division. For some egg cells, the actomyosin cortex was shown to exhibit counter-rotating chiral flows along the axis of division. Such chiral surface flows were shown to contribute to spatial rearrangements and left-right symmetry breaking in developing organisms. In spite of this prospective biological importance, the effect of chiral forces on the flows and emergent shape dynamics of a deformable surface are completely unknown. To shed a first light on that matter, we present here a numerical study of an axisymmetric viscoelastic surface embedded in a viscous fluid. We impose a generic counter-rotating force field on this surface and study the resulting chiral flow field and shape dynamics for various surface mechanical parameters. Notably, we find that the building of a neck, as is observed during cell division, occurs if the surface contains a strong shear elastic component. Furthermore, we find that a large areal relaxation time results in flows towards the equator of the surface. These flows assist the transport of a surface concentration during the formation of a contractile ring. Accordingly, we show that chiral forces by themselves can drive pattern formation and stabilise contractile rings at the equator. These results provide first mechanistic evidence that chiral flows can play a significant role to orchestrate cell division.
{© 2023 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft}

MSC:

81-XX Quantum theory
82-XX Statistical mechanics, structure of matter
83-XX Relativity and gravitational theory

Software:

AMDiS

References:

[1] Lebreton, G.; Geminard, C.; Lapraz, F.; Pyrpassopoulos, S.; Cerezo, D.; Speder, P.; Ostap, E. M.; Noselli, S., Molecular to organismal chirality is induced by the conserved myosin 1D, Science, 362, 949-52 (2018) · doi:10.1126/science.aat8642
[2] Wood, W. B., Left-right asymmetry in animal development, Annu. Rev. Cell Dev. Biol., 13, 53-82 (1997)
[3] Naganathan, S. R.; Middelkoop, T. C.; Fürthauer, S.; Grill, S. W., Actomyosin-driven left-right asymmetry: from molecular torques to chiral self organization, Curr. Opin. Cell Biol., 38, 24-30 (2016) · doi:10.1016/j.ceb.2016.01.004
[4] Chen, T-H, Cellular biology left-right symmetry breaking in tissue morphogenesis via cytoskeletal mechanics, Circ. Res., 110, 551-9 (2012) · doi:10.1161/CIRCRESAHA.111.255927
[5] Tee, Y. H., Cellular chirality arising from the self-organization of the actin cytoskeleton, Nat. Cell Biol., 17, 445-57 (2015) · doi:10.1038/ncb3137
[6] Vandenberg, L. N.; Lemire, J. M.; Levin, M., It’s never too early to get it right: a conserved role for the cytoskeleton in left-right asymmetry, Commun. Integr. Biol., 6 (2013) · doi:10.4161/cib.27155
[7] Danilchik, M. V.; Brown, E. E.; Riegert, K., Intrinsic chiral properties of the Xenopus egg cortex: an early indicator of left-right asymmetry?, Development, 133, 4517-26 (2006) · doi:10.1242/dev.02642
[8] Naganathan, S. R.; Fürthauer, S.; Nishikawa, M.; Jülicher, F.; Grill, S. W., Active torque generation by the actomyosin cell cortex drives left-right symmetry breaking, eLife, 3 (2014) · doi:10.7554/eLife.04165
[9] Blum, M.; Ott, T., Animal left-right asymmetry, Curr. Biol., 28, R301-4 (2018) · doi:10.1016/j.cub.2018.02.073
[10] Salbreux, G.; Charras, G.; Paluch, E., Actin cortex mechanics and cellular morphogenesis, Trends Cell Biol., 22, 536-45 (2012) · doi:10.1016/j.tcb.2012.07.001
[11] Pimpale, L. G.; Middelkoop, T. C.; Mietke, A.; Grill, S. W., Cell lineage-dependent chiral actomyosin flows drive cellular rearrangements in early Caenorhabditis elegans development, eLife, 9 (2020) · doi:10.7554/eLife.54930
[12] Sase, I.; Miyata, H.; Ishiwata, S.; Kinosita, K., Axial rotation of sliding actin filaments revealed by single-fluorophore imaging, Proc. Natl Acad. Sci., 94, 5646-50 (1997) · doi:10.1073/pnas.94.11.5646
[13] Beausang, J. F.; Schroeder, H. W.; Nelson, P. C.; Goldman, Y. E., Twirling of actin by Myosins II and V observed via polarized TIRF in a modified gliding assay, Biophys. J., 95, 5820 (2008) · doi:10.1529/biophysj.108.140319
[14] Ali, M. Y.; Uemura, S.; Adachi, K.; Itoh, H.; Kinosita, K.; Ishiwata, S., Myosin V is a left-handed spiral motor on the right-handed actin helix, Nat. Struct. Mol. Biol., 9, 464-7 (2002) · doi:10.1038/nsb803
[15] Mizuno, H.; Higashida, C.; Yuan, Y.; Ishizaki, T.; Narumiya, S.; Watanabe, N., Rotational movement of the formin mDia1 along the double helical strand of an actin filament, Science, 331, 80-83 (2011) · doi:10.1126/science.1197692
[16] Fischer-Friedrich, E.; Toyoda, Y.; Cattin, C. J.; Müller, D. J.; Hyman, A. A.; Jülicher, F., Rheology of the active cell cortex in mitosis, Biophys. J., 111, 589-600 (2016) · doi:10.1016/j.bpj.2016.06.008
[17] Hosseini, K.; Frenzel, A.; Fischer-Friedrich, E., EMT changes actin cortex rheology in a cell-cycle-dependent manner, Biophys. J., 120, 3516-26 (2021) · doi:10.1016/j.bpj.2021.05.006
[18] Bonfanti, A.; Fouchard, J.; Khalilgharibi, N.; Charras, G.; Kabla, A., A unified rheological model for cells and cellularised materials, R. Soc. Open Sci., 7 (2020) · doi:10.1098/rsos.190920
[19] Khalilgharibi, N., Stress relaxation in epithelial monolayers is controlled by the actomyosin cortex, Nat. Phys., 15, 839-47 (2019) · doi:10.1038/s41567-019-0516-6
[20] Mokbel, M.; Hosseini, K.; Aland, S.; Fischer-Friedrich, E., The poisson ratio of the cellular actin cortex is frequency dependent, Biophys. J., 118, 1968-76 (2020) · doi:10.1016/j.bpj.2020.03.002
[21] Kruse, K.; Joanny, J. F.; Jülicher, F.; Prost, J.; Sekimoto, K., Asters, vortices and rotating spirals in active gels of polar filaments, Phys. Rev. Lett., 92, 1-4 (2004) · doi:10.1103/PhysRevLett.92.078101
[22] Mietke, A2018Dynamics of active surfacesDissertationTU Dresden
[23] Fürthauer, S.; Strempel, M.; Grill, S. W.; Jülicher, F., Active chiral fluids, Eur. Phys. J. E, 35, 89 (2012) · doi:10.1140/epje/i2012-12089-6
[24] Fürthauer, S.; Strempel, M.; Grill, S. W.; Jülicher, F., Active chiral processes in thin films, Phys. Rev. Lett., 110 (2013) · doi:10.1103/PhysRevLett.110.048103
[25] Lier, R.; Armas, J.; Bo, S.; Duclut, C.; Jülicher, F.; Surówka, P., Passive odd viscoelasticity, Phys. Rev. E, 105 (2022) · doi:10.1103/PhysRevE.105.054607
[26] Banerjee, D.; Vitelli, V.; Jülicher, F.; Surówka, P., Active viscoelasticity of odd materials, Phys. Rev. Lett., 126 (2021) · doi:10.1103/PhysRevLett.126.138001
[27] Scheibner, C.; Souslov, A.; Banerjee, D.; Surówka, P.; Irvine, W. T M.; Vitelli, V., Odd elasticity, Nat. Phys., 16, 475-80 (2020) · doi:10.1038/s41567-020-0795-y
[28] de Kinkelder, E.; Sagis, L.; Aland, S., A numerical method for the simulation of viscoelastic fluid surfaces, J. Comput. Phys., 440 (2021) · Zbl 07512371 · doi:10.1016/j.jcp.2021.110413
[29] Clark, A. G.; Dierkes, K.; Paluch, E. K., Monitoring actin cortex thickness in live cells, Biophys. J., 105, 570-80 (2013) · doi:10.1016/j.bpj.2013.05.057
[30] Wittwer, L. D.; Aland, S., A computational model of self-organized shape dynamics of active surfaces in fluids (2022)
[31] Mietke, A.; Jemseena, V.; Kumar, K. V.; Sbalzarini, I. F.; Jülicher, F., Minimal model of cellular symmetry breaking, Phys. Rev. Lett., 123 (2019) · doi:10.1103/PhysRevLett.123.188101
[32] Mietke, A.; Jülicher, F.; Sbalzarini, I. F., Self-organized shape dynamics of active surfaces, Proc. Natl Acad. Sci., 116, 29-34 (2019) · doi:10.1073/pnas.1810896115
[33] Bonati, M.; Wittwer, L. D.; Aland, S.; Fischer-Friedrich, E., On the role of mechanosensitive binding dynamics in the pattern formation of active surfaces, New J. Phys., 24 (2022) · doi:10.1088/1367-2630/ac806d
[34] Reymann, A-C; Staniscia, F.; Erzberger, A.; Salbreux, G.; Grill, S. W., Cortical flow aligns actin filaments to form a furrow, eLife, 5 (2016) · doi:10.7554/eLife.17807
[35] Spira, F.; Cuylen-Haering, S.; Mehta, S.; Samwer, M.; Reversat, A.; Verma, A.; Oldenbourg, R.; Sixt, M.; Gerlich, D. W., Cytokinesis in vertebrate cells initiates by contraction of an equatorial actomyosin network composed of randomly oriented filaments, eLife, 6 (2017) · doi:10.7554/eLife.30867
[36] Bois, J. S.; Jülicher, F.; Grill, S. W., Pattern formation in active fluids, Phys. Rev. Lett., 106 (2011) · doi:10.1103/PhysRevLett.106.028103
[37] Kumar, K. V.; Bois, J. S.; Jülicher, F.; Grill, S. W., Pulsatory patterns in active fluids, Phys. Rev. Lett., 112 (2014) · doi:10.1103/PhysRevLett.112.208101
[38] Salbreux, G.; Jülicher, F., Mechanics of active surfaces, Phys. Rev. E, 96 (2017) · doi:10.1103/PhysRevE.96.032404
[39] Wagner, E.; Glotzer, M., Local RhoA activation induces cytokinetic furrows independent of spindle position and cell cycle stage, J. Cell. Biol., 213, 641-9 (2016) · doi:10.1083/jcb.201603025
[40] Salbreux, G.; Prost, J.; Joanny, J. F., Hydrodynamics of cellular cortical flows and the formation of contractile rings, Phys. Rev. Lett., 103 (2009) · doi:10.1103/PhysRevLett.103.058102
[41] Berthoumieux, H.; Maître, J-L; Heisenberg, C-P; Paluch, E. K.; Jülicher, F.; Salbreux, G., Active elastic thin shell theory for cellular deformations, New J. Phys., 16 (2014) · Zbl 1451.74156 · doi:10.1088/1367-2630/16/6/065005
[42] Gross, P.; Kumar, K. V.; Goehring, N. W.; Bois, J. S.; Hoege, C.; Jülicher, F.; Grill, S. W., Guiding self-organized pattern formation in cell polarity establishment, Nat. Phys., 15, 293-300 (2019) · doi:10.1038/s41567-018-0358-7
[43] Middelkoop, T. C.; Garcia-Baucells, J.; Quintero-Cadena, P.; Pimpale, L. G.; Yazdi, S.; Sternberg, P. W.; Gross, P.; Grill, S. W., CYK-1/Formin activation in cortical RhoA signaling centers promotes organismal left, right symmetry breaking, Proc. Natl Acad. Sci., 118 (2021) · doi:10.1073/pnas.2021814118
[44] De La Cruz, E. M.; Roland, J.; McCullough, B. R.; Blanchoin, L.; Martiel, J-L, Origin of twist-bend coupling in actin filaments, Biophys. J., 99, 1852-60 (2010) · doi:10.1016/j.bpj.2010.07.009
[45] Gore, J.; Bryant, Z.; Nöllmann, M.; Le, M. U.; Cozzarelli, N. R.; Bustamante, C., DNA overwinds when stretched, Nature, 442, 836-9 (2006) · doi:10.1038/nature04974
[46] Ngo, K. X.; Kodera, N.; Katayama, E.; Ando, T.; Uyeda, T. Q., Cofilin-induced unidirectional cooperative conformational changes in actin filaments revealed by high-speed atomic force microscopy, elife, 4 (2015) · doi:10.7554/eLife.04806
[47] McGough, A.; Pope, B.; Chiu, W.; Weeds, A., Cofilin changes the twist of f-actin: implications for actin filament dynamics and cellular function, J. Cell Biol., 138, 771-81 (1997) · doi:10.1083/jcb.138.4.771
[48] Mokbel, M.; Aland, S., An ALE method for simulations of axisymmetric elastic surfaces in flow, Int. J. Numer. Methods Fluids, 92, 1604-25 (2020) · doi:10.1002/fld.4841
[49] Vey, S.; Voigt, A., AMDiS: adaptive multidimensional simulations, Comput. Vis. Sci., 10, 57-66 (2007) · doi:10.1007/s00791-006-0048-3
[50] Witkowski, T.; Ling, S.; Praetorius, S.; Voigt, A., Software concepts and numerical algorithms for a scalable adaptive parallel finite element method, Adv. Comput. Math., 41, 1145-77 (2015) · Zbl 1334.65160 · doi:10.1007/s10444-015-9405-4
[51] Lautrup, B., Physics of Continuous Matter: Exotic and Everyday Phenomena in the Macroscopic World (2004), Boca Raton, FL: CRC press, Boca Raton, FL
[52] Daniels, B. R.; Masi, B. C.; Wirtz, D., Probing single-cell micromechanics in vivo: the microrheology of c. elegans developing embryos, Biophys. J., 90, 4712-9 (2006) · doi:10.1529/biophysj.105.080606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.