×

Semi-implicit finite volume schemes for a chemotaxis-growth model. (English) Zbl 1382.65265

Summary: This paper is concerned with finite volume approximations for a nonlinear parabolic-elliptic system for chemotaxis-growth in \(\mathbb{R}^d\), \(d = 2,3\). This model describes a process of pattern formation by some chemotactic biological individuals. We present two schemes which make use of a semi-implicit time discretization and an upwind finite volume approximation. For both schemes, we prove existence, uniqueness and nonnegativity of the approximate solutions under some conditions on the time step, and we show (for one of the schemes) that the numerical solution converges to a corresponding weak solution for the studied model. Numerical simulations are performed in two dimensional spaces to demonstrate the efficiency of the schemes to capture the pattern formations and to verify our theoretical results.

MSC:

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
35Q92 PDEs in connection with biology, chemistry and other natural sciences
35A35 Theoretical approximation in context of PDEs
35K59 Quasilinear parabolic equations
35M33 Initial-boundary value problems for mixed-type systems of PDEs
92C17 Cell movement (chemotaxis, etc.)

Software:

Chemotaxis
Full Text: DOI

References:

[1] Aida, M.; Tsujikawa, T.; Efendiev, M.; Yagi, A.; Mimura, M., Lower estimate of the attractor dimension for a chemotaxis growth system, J. Lond. Math. Soc., 74, 2, 453-474 (2006) · Zbl 1125.37056
[2] Andreianov, B.; Bendahmane, M.; Saad, M., Finite volume methods for degenerate chemotaxis model, J. Comput. Appl. Math., 235, 14, 4015-4031 (2011) · Zbl 1228.65179
[3] Bessemoulin-Chatard, M.; Chainais-Hillairet, C.; Filbet, F., On discrete functional inequalities for some finite volume schemes, IMA J. Numer. Anal., 35, 3 (2014) · Zbl 1312.65142
[4] Budrene, E. O.; Berg, H. C., Complex patterns formed by motile cells of escherichia coli, Nature, 349, 630-633 (1991)
[5] Budrene, E. O.; Berg, H. C., Dynamics of formation of symmetrical patterns of chemotactic bacteria, Nature, 376, 49-53 (1995)
[6] Chainais-Hillairet, C.; Liu, J.-G.; Peng, Y.-J., Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis, M2AN Math. Model. Numer. Anal., 37, 319-338 (2003) · Zbl 1032.82038
[7] Chamoun, G.; Saad, M.; Talhouk, R., Monotone combined edge finite volume-finite element scheme for anisotropic Keller-Segel model, Numer. Methods Partial Differential Equations, 30, 3, 1030-1065 (2014) · Zbl 1301.65097
[8] Epshteyn, Y., Upwind-difference potentials method for Patlak-Keller-Segel chemotaxis model, J. Sci. Comput., 53, 689-713 (2012) · Zbl 1317.92019
[9] Epshteyn, Y.; Kurganov, A., New interior penalty discontinuous galerkin methods for the Keller-Segel chemotaxis model, SIAM J. Numer. Anal., 47, 1, 386-408 (2008) · Zbl 1183.92010
[10] Eymard, R.; Gallouët, T.; Herbin, R., Finite volume methods, (Handbook of Numerical Analysis Volume VII (2000)), 713-1020 · Zbl 0981.65095
[11] Filbet, F., A finite volume scheme for the Patlak-Keller-Segel chemotaxis model, Numer. Math., 104, 4, 457-488 (2006) · Zbl 1098.92006
[12] Horstmann, D., From 1970 until now: The Keller-Segel model in chemotaxis and its consequences I, Jahresber. Dtsch. Math.-Ver., 105, 103-165 (2003) · Zbl 1071.35001
[13] Horstmann, D., From 1970 until now: The Keller-Segel model in chemotaxis and its consequences II, Jahresber. Dtsch. Math.-Ver., 106, 51-69 (2004) · Zbl 1072.35007
[14] Ibrahim, M.; Saad, M., On the efficacy of a control volume finite element method for the capture of patterns for a volume-filling chemotaxis model, Comput. Math. Appl., 68, 1032-1051 (2014) · Zbl 1362.65092
[15] Keller, E.; Segel, L. A., Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26, 399-415 (1970) · Zbl 1170.92306
[16] Lauffenburger, D.; Aris, R.; Keller, K., Effects of random motility on growth of bacterial populations, Microb. Ecol., 7, 3, 207-227 (1981)
[17] Marrocco, A., 2D simulation of chemotaxis bacteria aggregation, ESAIM: Math. Model. Numer., 37, 617-630 (2003) · Zbl 1065.92006
[18] Mimura, M.; Tsujikawa, T., Aggregation pattern dynamics in a chemotaxis model including growth, Physica A, 230, 499-543 (1996)
[19] Nagai, T., Blow up of non radial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6, 37-55 (2001) · Zbl 0990.35024
[20] Nelder, J., The fitting of a generalization of the logistic curve, Biometrics, 17, 89-110 (1961) · Zbl 0099.14303
[21] Osaki, K.; Yagi, A., Global existence for a chemotaxis-growth system in \(R^2\), Adv. Math. Sci. Appl., 12, 587-606 (2002) · Zbl 1054.35111
[22] Painter, K. J.; Hillen, T., Spatio-temporal chaos in a chemotaxis model, Physica D, 240, 363-375 (2011) · Zbl 1255.37026
[23] Patlak, C., Random walk with persistence and external bias, Bull. Math. Biophys., 15, 311-338 (1953) · Zbl 1296.82044
[24] Saito, N., Conservative upwind finite-element method for a simplified Keller-Segel system modelling chemotaxis, IMA J. Numer. Anal., 27, 332-365 (2007) · Zbl 1119.65094
[25] Saito, N., Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis, Commun. Pure Appl. Anal., 11, 1, 339-364 (2012) · Zbl 1264.65148
[26] Saito, N.; Suzuki, T., Notes on finite difference schemes to a parabolic-elliptic system modelling chemotaxis, Appl. Math. Comput., 171, 72-90 (2005) · Zbl 1086.65089
[27] Simon, J., Compact sets in the space \(L^p(0, T; B)\), Ann. Math. Appl., 146, 65-96 (1987) · Zbl 0629.46031
[28] Strehl, R.; Sokolov, A.; Kuzmin, D.; Horstmann, D.; Turek, S., A positivity-preserving finite element method for chemotaxis problems in 3D, J. Comput. Appl. Math., 239, 290-303 (2013) · Zbl 1316.92015
[29] Strehl, R.; Sokolov, A.; Kuzmin, D.; Turek, S., A flux-corrected finite element method for chemotaxis problems, Comput. Methods Appl. Math., 10, 2, 118-131 (2010) · Zbl 1283.35007
[30] Tello, J.; Winkler, M., A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32, 849-877 (2007) · Zbl 1121.37068
[31] Tyson, R.; Lubkin, S. R.; Murray, J. D., A minimal mechanism for bacterial pattern formation, Proc. R. Soc. Lond. Ser. B, 266, 299-304 (1999)
[32] Winkler, M., Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35, 1516-1537 (2010) · Zbl 1290.35139
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.