×

Constructions of DNA and polypeptide cages based on plane graphs and odd crossing \(\pi \)-junctions. (English) Zbl 1511.92048

Summary: The constructions of three-dimensional synthetic DNA and polypeptide structures with a single closed DNA strand and polypeptide chain are mathematically based on strong traces of polyhedral graphs. However, a method developed for constructing such a DNA and polypeptide structure may impose additional restrictions on the types of strong traces and polyhedral graphs. In this paper, we show that strong traces for certain 2-connected plane graphs (allowed to have multiple edges) can be obtained using thickened graphs (sometimes called ribbon graphs) constructed with only two types of junctions : 0-crossing junction and special \(d ( v )\)-crossing junction (called \(\pi \)-junction), where \(d ( v )\) is the degree of the vertex \(v\) at which the \(d ( v )\)-crossing junction is to be placed. The \(\pi \)-junctions are only applicable to vertices with odd degrees \(( \geq 3)\). We characterize the 2-connected plane graphs to which our approach can be applied and provide a brief guideline for the implementation of our method. This approach provides the theory, as well as a set of candidates, for designing and constructing stable DNA and polypeptide molecules needing only a method capable of creating the 0-crossing and \(\pi \)-junctions in a 2-connected plane graph.

MSC:

92D20 Protein sequences, DNA sequences
92E10 Molecular structure (graph-theoretic methods, methods of differential topology, etc.)
05C10 Planar graphs; geometric and topological aspects of graph theory
Full Text: DOI

References:

[1] Aldaye, F. A.; Palmer, A. L.; Sleiman, H. F., Assembling materials with DNA as the guide, Science, 321, 1795-1799 (2008)
[2] Seeman, N. C., Nanomaterials based on DNA, Annu. Rev. Biochem., 79, 65-87 (2010)
[3] Li, S. H.; Tian, T. T.; Zhang, T.; Cai, X. X.; Lin, Y. F., Advances in biological applications of self-assembled DNA tetrahedral nanostructures, mater, Today, 24, 57-68 (2019)
[4] Sadowski, J. P.; Calvert, C. R.; Zhang, D. Y.; Pierce, N. A.; Yin, P., Developmental self-assembly of a DNA tetrahedron, ACS Nano, 8, 3251-3259 (2014)
[5] Hu, Y.; Chen, Z.; Zhang, H.; Li, M.; Hou, Z.; Luo, X.; Xue, X., Development of DNA tetrahedron-based drug delivery system, Drug Deliv., 24, 1295-1301 (2017)
[6] Li, J. B.; Wang, X. C.; Wang, X. M., Radiolabeling and preliminary evaluation of DNA cube nanoparticles in vivo & in vitro, J. Nucl. Med., 59, 1068-1069 (2018)
[7] Bujold, K. E.; Fakhoury, J.; Edwardson, T. G.W.; Carneiro, K. M.M.; Briard, J. N.; Godin, A. G.; Amrein, L.; Hamblin, G. D.; Panasci, L. C.; Wiseman, P. W.; Sleiman, H. F., Sequence-responsive unzipping DNA cubes with tunable cellular uptake profiles, Chem. Sci., 5, 2449-2455 (2014)
[8] Liu, L.; Li, Z.; Li, Y.; Mao, C. D., Rational design and self-assembly of two-dimensional, dodecagonal DNA quasicrystals, J. Am. Chem. Soc., 141, 4248-4251 (2019)
[9] Auyeung, E.; Li, T. I.N. G.; Senesi, A. J.; Schmucker, A. L.; Pals, B. C.; Cruz, M. O.; Mirkin, C. A., DNA-mediated nanoparticle crystallization into Wulff polyhedra, Nature., 505, 73-77 (2014)
[10] Liu, J.; Song, L.; Liu, S.; Jiang, Q.; Liu, Q.; Li, N.; Wang, Z.-G.; Ding, B., A DNA-based nanocarrier for efficient gene delivery and combined cancer therapy, Nano Letters., 18, 3328-3334 (2018)
[11] Mou, Q.; Ma, Y.; Pan, G.; Xue, B.; Yan, D.; Zhang, C.; Zhu, X., DNA trojan horses: self-assembled floxuridine-containing DNA polyhedra for cancer therapy, Angew. Chem. Int. Ed. Engl., 56, 12528-12532 (2017)
[12] Tay, A.; Melosh, N., Nanostructured materials for intracellular cargo delivery, Acc. Chem. Res., 52, 2462-2471 (2019)
[13] Sawada, T.; Saito, A.; Tamiya, K.; Shimokawa, K.; Hisada, Y.; Fujita, M., Metal-peptide rings form highly entangled topologically inequivalent frameworks with the same ring- and crossing-numbers, Nat. Commun., 10, 921-926 (2019)
[14] Sawada, T.; Inomata, Y.; Shimokawa, K.; Fujita, M., A metal peptide capsule by multiple ring threading, Nat. Commun., 10, 5687-5695 (2019)
[15] Sawada, T.; Fujita, M., Folding and assembly of metal-linked peptidic nanostructures, Chem, 6, 1-16 (2020)
[16] Hu, G.; Zhang, X.; Lu, D.; Qiu, W. Y., The architecture of platonic polyhedral links, J. Math. Chem., 46, 592-603 (2009) · Zbl 1196.92052
[17] Jonoska, N.; Saito, M., Boundary components of thickened graphs, Lect. Notes Comput. Sci., 2340, 70-81 (2002) · Zbl 1065.68549
[18] Jonoska, N.; Twarock, R., Blueprints for dodecahedral DNA cages, J. Phys. A Math. Theor., 41, 304043-304057 (2008) · Zbl 1140.92009
[19] Cheng, X. S.; Diao, Y., Configurations of DNA cages based on plane graphs and vertex junctions, J. Phys. A Math. Theor., 53, 395601-395622 (2020) · Zbl 1519.92156
[20] Gradišar, H.; Božič, S.; Doles, T.; Vengust, D.; Bratkovič, I. H.; Mertelj, A.; Webb, B.; Šali, A.; Klǎzar, S.; Jerala, R., Design of a single chain polypeptide tetrahedron assembled from coiled coil segments, Nat. Chem. Bio., 9, 362-366 (2013)
[21] Ljubetič, A.; Lapenta, F.; Gradišar, H., Design of coiled-coil protein-origami cages that self-assemble in vitro and in vivo, Nat. Biotechnol., 35, 1094-1101 (2017)
[22] e2021899118
[23] Fijavž, G.; Pisanski, T.; Rus, J., Strong traces model of self-assembly polypeptide structures, MATCH Commun. Math. Comput. Chem, 71, 199-212 (2014) · Zbl 1464.05125
[24] ArXiv:2004.12564v2 · Zbl 1458.05118
[25] Guo, X.; Jin, X.; Yan, Q., Characterization of regular checkerboard colourable twisted duals of ribbon graphs, J. Comb. Theory A,, 180, 105428-205450 (2021) · Zbl 1479.05105
[26] Metsidik, M.; Jin, X., Eulerian and even-face ribbon graph minors, Discrete Math., 343, 111953-111962 (2020) · Zbl 1443.05174
[27] Klavžar, S.; Rus, J., Stable traces as a model for self-assembly of polypeptide nanoscale polyhedrons, MATCH Commun. Math. Comput. Chem., 70, 317-330 (2013) · Zbl 1299.92091
[28] Fijavž, G.; Pisanski, T.; Rus, J., Strong traces model of self-assembly of polypeptide structures, MATCH Commun. Math. Comput. Chem., 71, 199-212 (2014) · Zbl 1464.05125
[29] Škoviera, M.; Nedela, R., The maximum genus of a graph and doubly Eulerian trails, Boll. Unione Mat. Ital., VII Ser. B., 4, 541-551 (1990) · Zbl 0715.05018
[30] Thomassen, C., Bidirectional retracting-free double tracings and upper embeddability of graphs, J. Combin. Theory Ser. B., 50, 198-207 (1990) · Zbl 0715.05054
[31] Cromwell, P. R., Knots and Links (2004), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1066.57007
[32] Tarry, G., Le problème des labyrinthes, Nouv. Ann. Math., 14, 187-190 (1895) · JFM 26.0257.02
[33] West, D. B., Introduction to Graph Theory, Vol. 2 (1996), Prentice Hall Upper Saddle River: Prentice Hall Upper Saddle River NJ · Zbl 0845.05001
[34] Xuong, N. H., How to determine the maximum genus of a graph, J. Comb. Theory B., 26, 215-217 (1979) · Zbl 0403.05035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.