×

Trace-minimal graphs and D-optimal weighing designs. (English) Zbl 1085.62087

Authors’ abstract: Let \({\mathcal G}(v, \delta)\) be the set of all \(\delta\)-regular graphs on \(v\) vertices. Certain graphs from among those in \({\mathcal G}(v,\delta)\) with maximum girth have a special property called trace-minimality. In particular, all strongly regular graphs with no triangles and some cages are trace-minimal. These graphs play an important role in the statistical theory of \(D\)-optimal weighing designs. Each weighing design can be associated with a \((0,1)\)-matrix. Let \(M_{m,n}(0,1)\) denote the set of all \(m\times n\) \((0,1)\)-matrices and let \[ G(m,n) = \max\{\det X^T X : X\in M_{m,n}(0,1)\}. \] A matrix \(X\in M_{m,n}(0,1)\) is a \(D\)-optimal design matrix if \(\det X^T X = G(m,n)\). We exhibit some new formulas for \(G(m,n)\) where \(n\equiv -1\pmod 4\) and \(m\) is sufficiently large. These formulas depend on the congruence class of \(m\pmod n\). More precisely, let \(m=nt+r\) where \(0\leq r<n\). For each pair \(n,r\), there is a polynomial \(P(n,r,t)\) of degree \(n\) in \(t\), which depends only on \(n,r\), such that \(G(nt+r,n)=P(n,r,t)\) for all sufficiently large \(t\). The polynomial \(P(n,r,t)\) is computed from the characteristic polynomial of the adjacency matrix of a trace-regular graph whose degree of regularity and number of vertices depend only on \(n\) and \(r\). We obtain explicit expressions for the polynomial \(P(n,r,t)\) for many pairs \(n,r\).
In particular we obtain formulas for \(G(nt+r,n)\) for \(n=19,23\) and \(27\), all \(0\leq r<n\), and all sufficiently large \(t\). And we obtain families of formulas for \(P(n,r,t)\) from families of trace-minimal graphs including bipartite graphs obtained from finite projective planes, generalized quadrilaterals, and generalized hexagons.

MSC:

62K05 Optimal statistical designs
05B20 Combinatorial aspects of matrices (incidence, Hadamard, etc.)
05B25 Combinatorial aspects of finite geometries
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
15A15 Determinants, permanents, traces, other special matrix functions
15B36 Matrices of integers
Full Text: DOI

References:

[1] Ábrego, B.; Fernández-Merchant, S.; Neubauer, M. G.; Watkins, W., D-optimal weighing designs for \(n\)≡−1(mod4) objects and a large number of weighings, Linear Algebra Appl., 374, 175-218 (2003) · Zbl 1025.62025
[2] Brinkmann, G., Fast generation of cubic graphs, J. Graph Theory, 23, 139-149 (1996) · Zbl 0858.05093
[3] Burnside, W. S.; Panton, A. W., The Theory of Equations with an Introduction to the Theory of Binary Algebra (1960), Dover: Dover New York · JFM 36.0135.02
[4] Cvetković, D.; Doob, M.; Sachs, H., Spectra of Graphs, Theory and Application (1980), Academic Press: Academic Press New York · Zbl 0458.05042
[5] (Colbourn, C. J.; Dinitz, J. H., The CRC Handbook of Combinatorial Design (1996), CRC Press: CRC Press Boca Raton) · Zbl 0836.00010
[6] Finck, H.-J.; Grohmann, G., Vollständiges Produkt, chromatische Zahl und charakteristisches Polynom regulärer Graphen, I. Wiss. Z. TH Ilmenau, 11, 1-3 (1965) · Zbl 0132.20801
[7] Godsil, C. D., Problems in algebraic combinatorics, Electron. J. Combin., F1 (1995) · Zbl 0818.05063
[9] Hotelling, H., Some improvements in weighing and other experimental techniques, Ann. Math. Statist., 15, 297-306 (1944) · Zbl 0063.02076
[10] Hudelson, M.; Klee, V.; Larman, D., Largest \(j\)-simplices in \(d\)-cubes: some relatives of the Hadamard determinant problem, Linear Algebra Appl., 241, 519-598 (1996) · Zbl 0861.15004
[11] Mood, A. M., On Hotelling’s weighing problem, Ann. Math. Statist., 17, 432-446 (1946) · Zbl 0063.04082
[12] Neubauer, M.; Watkins, W.; Zeitlin, J., Notes on D-optimal designs, Linear Algebra Appl., 280, 109-127 (1998) · Zbl 0930.62077
[13] Neubauer, M.; Watkins, W.; Zeitlin, J., Maximal D-optimal weighing designs for 4 and 5 objects, Electron. J. Linear Algebra, 4, 48-72 (1998), Available from:
[14] Neubauer, M.; Watkins, W.; Zeitlin, J., D-optimal weighing designs for six objects, Metrika, 52, 185-211 (2000) · Zbl 1092.65504
[15] Neubauer, M.; Watkins, W., D-optimal designs for seven objects and a large number of weighings, Linear and Multilinear Algebra, 50, 61-74 (2002) · Zbl 0995.62067
[16] Pukelsheim, F., Optimal Design of Experiments (1993), Wiley: Wiley New York · Zbl 0834.62068
[17] Pullman, N.; Wormald, N., Regular graphs with prescribed odd girth, Utilitas Math., 24, 243-251 (1983) · Zbl 0519.05047
[18] Rivlin, T., The Chebyshev Polynomials (1974), Wiley: Wiley New York · Zbl 0299.41015
[19] Robinson, R. W.; Wormald, W. C., Number of cubic graphs, J. Graph Theory, 7, 463-467 (1983) · Zbl 0528.05037
[21] Sachs, H., Beziehungen zwischen den in einem Graphen enthaltenen Kreisen und seinem charakteristischen Polynom, Publ. Math. Debrecen, 11, 119-134 (1964) · Zbl 0137.18103
[22] Stevenson, F. W., Projective Planes (1972), Freeman: Freeman San Francisco · Zbl 0245.50022
[23] van Maldeghem, H., Generalized Polygons, Monographs in Mathematics, vol. 93 (1998), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0914.51005
[24] van Lint, J. H.; Wilson, R. M., A Course in Combinatorics (1992), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0769.05001
[25] Yates, F., Complex experiments, J. Roy. Statist. Soc. Supp., 2, 181-247 (1935)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.