×

A new numerical strategy for the resolution of high-Péclet advection-diffusion problems. (English) Zbl 1353.76058

Summary: This paper introduces a discontinuous method for the efficient determination of an approximate numerical solution of the two-dimensional advection-diffusion equation. Using the VTCR methodology (see [P. Ladevèze, C. R. Acad. Sci., Paris, Sér. II, Fasc. b 322, No. 12, 849–856 (1996; Zbl 0920.73113)]), this method involves free-space solutions of the governing partial differential equation. For the advection-diffusion equation with constant coefficients, the free-space solutions are exponential functions with a sharp gradient. The continuity of the solution across element boundaries is enforced weakly through a dedicated variational formulation. Preliminary results for a certain type of benchmark problem suggest that this approach is a promising numerical tool for handling such problems.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D07 Stokes and related (Oseen, etc.) flows
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
35Q35 PDEs in connection with fluid mechanics

Citations:

Zbl 0920.73113
Full Text: DOI

References:

[1] Ladevèze, P., A new computational approach for structure vibrations in the medium frequency range, CR Acad. Sci. Paris, 322, IIb, 849-856 (1996) · Zbl 0920.73113
[2] J. Donera, A. Huerta, Finite element methods for flow problems, Ed Wiley, 2003.; J. Donera, A. Huerta, Finite element methods for flow problems, Ed Wiley, 2003.
[3] Brooks, A. N.; Hughes, T. J.R., Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier Stokes equations, Comput. Math. Appl. Mech. Engrg., 32, 199-259 (1982) · Zbl 0497.76041
[4] Corsini, A.; Rispoli, F.; Santoriello, A., A quadratic Petrov-Galerkin formulation for advection– diffusion-reaction problems in turbulence modelling, J. Comput. Appl. Mech., 5, 237-249 (2004) · Zbl 1150.76437
[5] Hughes, T. J.R.; Franca, L. P.; Hulbert, G. M., A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 73, 2, 173-189 (1989) · Zbl 0697.76100
[6] Harari, I.; Hughes, T. J.R., Galerkin/least squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains, Comput. Methods Appl. Mech. Engrg., 98, 411-454 (1992) · Zbl 0762.76053
[7] Franca, L. P.; Frey, S. L.; Hughes, T. J.R., Stabilized finite element methods, I. Application to the advective-diffusive model, Comput. Methods Appl. Mech. Engrg., 95, 253-276 (1992) · Zbl 0759.76040
[8] Franca, L. P.; Farhat, C., Bubble functions prompt unusual stabilized finite element methods, Comput. Methods Appl. Mech. Engrg., 123, 299-308 (1995) · Zbl 1067.76567
[9] Brezzi, F.; Russo, A., Choosing bubbles for advection-diffusion problems, Math. Models Methods Appl. Sci., 4, 4, 571-587 (1994) · Zbl 0819.65128
[10] Brezzi, F.; Marini, D.; Russo, A., Applications of the pseudo residual-free bubbles to the stabilization of convection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 166, 51-63 (1998) · Zbl 0932.65113
[11] Babushka, I.; Melenk, J. M., The partition of unity method, Int. J. Numer. Methods Engrg., 40, 727-758 (1997) · Zbl 0949.65117
[12] Farhat, C.; Harari, I.; Franca, L. P., The discontinuous enrichment method, Comput. Methods Appl. Mech. Engrg., 190, 6455-6479 (2001) · Zbl 1002.76065
[13] Wang, D.; Tezaur, R.; Toivanen, J.; Farhat, C., Overview of the discontinuous enrichment method, the ultra-weak variational formulation, and the partition of unity method for acoustic scattering in the medium frequency regime and performance comparisons, Int. J. Numer. Methods Engrg., 89, 403-417 (2012) · Zbl 1242.76143
[14] Ladevèze, P.; Arnaud, L.; Rouch, P.; Blanzé, C., The variational theory of complex rays for the calculation of medium frequency vibrations, Engrg. Comput., 18, 1-2, 193-214 (2001) · Zbl 0997.74025
[15] Riou, H.; Ladevèze, P.; Sourcis, B., The multiscale VTCR approach applied to acoustics problems, J. Comput. Acoust., 16, 4, 487-505 (2008) · Zbl 1257.74067
[16] Kalashnikova, I.; Farhat, C.; Tezaur, R., A discontinuous enrichment method for the finite element solution of high Peclet advection diffusion problems, Finite Elements Anal. Design, 45, 238-250 (2009)
[17] L. Kovalevsky, P. Ladevèze, H. Riou, M. Bonnet, The variational theory of complex rays for three-dimensional Helmholtz problems, J. Comput. Acoust., accepted for publications, http://dx.doi.org/10.1142/S0218396X1250021X.; L. Kovalevsky, P. Ladevèze, H. Riou, M. Bonnet, The variational theory of complex rays for three-dimensional Helmholtz problems, J. Comput. Acoust., accepted for publications, http://dx.doi.org/10.1142/S0218396X1250021X. · Zbl 1360.76261
[18] Harari, I.; Franca, L. P.; Oliveira, S. P., Streamline design of stability parameters for advection-diffusion problems, J. Comput. Phys., 171, 115-131 (2001) · Zbl 0985.65146
[19] Strouboulis, T.; Babuska, I.; Hidajat, R., The generalized finite element method for Helmholtz equation: theory, computation and open problems, Comput. Methods Appl. Mech. Engrg., 195, 4711-4731 (2006) · Zbl 1120.76044
[20] Farhat, C.; Kalashnikova, I.; Tezaur, R., A higher-order discontinuous enrichment method for the solution of high Peclet advection-diffusion problems on unstructured meshes, Int. J. Numer. Methods Engrg., 81, 604-636 (2010) · Zbl 1183.76805
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.