×

Radiative heating of a glass plate. (English) Zbl 1328.35240

Summary: This paper aims to prove existence and uniqueness of a solution to the coupling of a nonlinear heat equation with nonlinear boundary conditions with the exact radiative transfer equation, assuming the absorption coefficient \(\kappa(\lambda)\) to be piecewise constant and null for small values of the wavelength \(\lambda\) as in the paper of N. Siedow et al. [“Application of a new method for radiative heat transfer to flat glass tempering”, J. Am. Ceram. Soc., 88, No. 8, 2181–2187 (2005)]. An important observation is that for a fixed value of the wavelength \(\lambda\), the Planck function is a Lipschitz function with respect to the temperature. Using this fact, we deduce that the solution is at most unique. To prove the existence of a solution, we define a fixed point problem related to our initial boundary value problem to which we apply the Schauder theorem in a closed convex subset of the Banach separable space \(L^2\left(0,t_f;C([0,l])\right)\). We use also the Stampacchia truncation method to derive lower and upper bounds on the solution.

MSC:

35Q79 PDEs in connection with classical thermodynamics and heat transfer
35K20 Initial-boundary value problems for second-order parabolic equations
35K55 Nonlinear parabolic equations
35K58 Semilinear parabolic equations
35K90 Abstract parabolic equations
35Q60 PDEs in connection with optics and electromagnetic theory
Full Text: DOI

References:

[1] Ancona, A., “Continuité des contractions dans les espaces de Dirichlet”, 563 (1976), Springer-Verlag · Zbl 0341.31006
[2] Brézis, H., “Analyse fonctionnelle Théorie et applications” (1993), Masson: Masson, Paris · Zbl 0511.46001
[3] Clever, D.; Lang, J., Optimal Control of Radiative Heat Transfer in Glass Cooling with Restrictions on the Temperature Gradient, Optim. Control Appl. Meth. (2011) · Zbl 1258.49066
[4] Dautray, L.; Lions, J.-L., “Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques Volume 8 Evolution: semi-groupe, variationnel” (1988), Masson: Masson, Paris · Zbl 0749.35004
[5] Desvignes, F., “Rayonnements optiques Radiométrie-Photométrie” (1991), Masson: Masson, Paris
[6] Druet, P.-E., Weak solutions to a time-dependent heat equation with nonlocal radiation boundary condition and arbitrary p-summable right-hand side, Applications of Mathematics, 55, 2, 111-149 (2010) · Zbl 1224.35057 · doi:10.1007/s10492-010-0005-9
[7] Evans, L. C., “Partial Differential Equations”, GSM 19 (1999), AMS Providence: AMS Providence, Rhode Island
[8] Friedman, A., “Partial Differential Equations” (1976), Robert E. Krieger Publishing Company
[9] Hinze, M.; Pinnau, R.; Ulbrich, M.; Ulbrich, S., “Optimization with PDE constraints” (2009), Springer · Zbl 1167.49001
[10] Hottel, H. C.; Sarofim, A. F., “Radiative Transfer” (1967), McGraw-Hill Book Company
[11] Kinderlehrer, D.; Stampacchia, G., “An Introduction to Variational Inequalities and their Applications” (1980), Academic Press · Zbl 0457.35001
[12] Ladyzenskaja, O. A.; Solonnikov, V. A.; Uralceva, N. N., “Linear and Quasilinear Equations of Parabolic Type”, 23 (1968), Translations of Mathematical Monographs, AMS Providence · Zbl 0174.15403
[13] Laitinen, L. T., “Mathematical modelling of conductive-radiative heat transfer” (2000), Finland
[14] Laitinen, M. T.; Tiihonen, T., Integro-differential equation modelling heat transfer in conducting, radiating and semitransparent materials, Math. Methods Appl. Sci., 21, 5, 375-392 (1998) · Zbl 0958.80003 · doi:10.1002/(SICI)1099-1476(19980325)21:5<375::AID-MMA953>3.0.CO;2-U
[15] Lang, J., Adaptive computation for boundary control of radiative heat transfer in glass, Journal of Computational and Applied Mathematics, 183, 312-326 (2005) · Zbl 1100.65073 · doi:10.1016/j.cam.2004.12.035
[16] Lions, J.-L., “Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires” (1967), Dunod: Dunod, Paris · Zbl 0189.40603
[17] Maréchal, A., Optique Géométrique Générale, in Encyclopedia of Physics, volume XXIV: Fundamentals of Optics with 761 figures, edited by S. Flügge, 24, 44-170 (1956)
[18] Marle, C.-M., “Mesures et probabilités” (1974), Hermann · Zbl 0306.28001
[19] Meyer, C.; Philip, P.; Tröltzsch, F., Optimal control of a semilinear PDE with nonlocal radiation interface conditions, SIAM J. Control Optim., 45, 699-721 (2006) · Zbl 1109.49026 · doi:10.1137/040617753
[20] Modest, M. F., “Radiative Heat Transfer” (2003), Academic Press
[21] Pascali, D.; Sburlan, S., “Non linear mappings of monotone type” (1978), Editura Academiei, Bucuresti, Romania, Sijthoff & Noordhoff International Publishers · Zbl 0392.47026
[22] Pinnau, R., Analysis of optimal boundary control for radiative heat ransfer modeled by the \(SP_1\)-system, Communications in Mathematical Sciences, 5,4, 951-969 (2007) · Zbl 1145.49015 · doi:10.4310/CMS.2007.v5.n4.a11
[23] Planck, M., “The theory of Heat Radiation” (1991), Dover Publications Inc. · Zbl 0127.21701
[24] Reed, M.; Simon, B., “Methods of Modern Mathematical Physics I: Functional analysis” (1972), Academic Press · Zbl 0242.46001
[25] Siedow, N.; Grosan, T.; Lochegnies, D.; Romero, E., Application of a New Method for Radiative Heat Tranfer to Flat Glass Tempering, J. Am. Ceram. Soc., 88, 8, 2181-2187 (2005) · doi:10.1111/j.1551-2916.2005.00402.x
[26] Soudre, L., “Etude numérique et expérimentale du thermoformage d’une plaque de verre” (2009), France
[27] Taine, J.; Iacona, E.; Petit, J.-P., “Transferts Thermiques Introduction aux transferts d’énergie” (2008), Dunod
[28] Taine, J.; Petit, J.-P., “Heat Transfer” (1993), Prentice Hall · Zbl 0818.73001
[29] Yosida, K., “Functional Analysis” (1971), Springer-Verlag · Zbl 0217.16001 · doi:10.1007/978-3-662-00781-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.