×

Block-diagonalization of quaternion circulant matrices with applications. (English) Zbl 07900915

Summary: It is well known that a complex circulant matrix can be diagonalized by a discrete Fourier matrix with imaginary unit \(\mathtt{i}\). The main aim of this paper is to demonstrate that a quaternion circulant matrix cannot be diagonalized by a discrete quaternion Fourier matrix with three imaginary units \(\mathtt{i}\), \(\mathtt{j}\), and \(\mathtt{k}\). Instead, a quaternion circulant matrix can be block-diagonalized into 1-by-1 block and 2-by-2 block matrices by permuted discrete quaternion Fourier transform matrix. With such a block-diagonalized form, the inverse of a quaternion circulant matrix can be determined efficiently similarly to the inverse of a complex circulant matrix. We make use of this block-diagonalized form to study quaternion tensor singular value decomposition of quaternion tensors where the entries are quaternion numbers. The applications, including computing the inverse of a quaternion circulant matrix and solving quaternion Toeplitz systems arising from linear prediction of quaternion signals, are employed to validate the efficiency of our proposed block-diagonalized results.

MSC:

65F10 Iterative numerical methods for linear systems
97N30 Numerical algebra (educational aspects)
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

References:

[1] Chan, T. F., An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 766-771, doi:10.1137/0909051. · Zbl 0646.65042
[2] Chou, J. C., Quaternion kinematic and dynamic differential equations, IEEE Trans. Robot. Autom., 8 (1992), pp. 53-64.
[3] Ell, T. A., Bihan, N. Le, and Sangwine, S. J., Quaternion Fourier Transforms for Signal and Image Processing, John Wiley & Sons, 2014. · Zbl 1314.94004
[4] Flamant, J., Le Bihan, N., and Chainais, P., Spectral analysis of stationary random bivariate signals, IEEE Trans. Signal Process., 65 (2017), pp. 6135-6145. · Zbl 1415.94103
[5] Flamant, J., Le Bihan, N., and Chainais, P., Time-frequency analysis of bivariate signals, Appl. Comput. Harmon. Anal., 46 (2019), pp. 351-383. · Zbl 1434.94024
[6] Flamant, J., Miron, S., and Brie, D., Quaternion non-negative matrix factorization: Definition, uniqueness, and algorithm, IEEE Trans. Signal Process., 68 (2020), pp. 1870-1883. · Zbl 07590863
[7] Gil, J. J. and Ossikovski, R., Polarized Light and the Mueller Matrix Approach, CRC Press, Boca Raton, FL, 2016. · Zbl 1338.78004
[8] Giordano, A. and Hsu, F., Least Square Estimation with Applications to Digital Signal Processing, John Wiley & Sons, New York, 1985.
[9] Jia, Z., Ng, M. K., and Song, G. J., Lanczos method for large-scale quaternion singular value decomposition, Numer. Algorithms, 82 (2019), pp. 699-717. · Zbl 07107363
[10] Jiang, Q. and Ng, M., Robust low-tubal-rank tensor completion via convex optimization, in Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI), , 2019, pp. 2649-2655.
[11] Kernfeld, E., Kilmer, M., and Aeron, S., Tensor-tensor products with invertible linear transforms, Linear Algebra Appl., 485 (2015), pp. 545-570. · Zbl 1323.15016
[12] Kilmer, M. E., Braman, K., Hao, N., and Hoover, R. C., Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 148-172, doi:10.1137/110837711. · Zbl 1269.65044
[13] Kilmer, M. E. and Martin, C. D., Factorization strategies for third-order tensors, Linear Algebra Appl., 435 (2011), pp. 641-658. · Zbl 1228.15009
[14] Kunze, K. and Schaeben, H., The Bingham distribution of quaternions and its spherical Radon transform in texture analysis, Math. Geol., 36 (2004), pp. 917-943.
[15] Le Bihan, N. and Mars, J., Singular value decomposition of quaternion matrices: A new tool for vector-sensor signal processing, Signal Process., 84 (2004), pp. 1177-1199. · Zbl 1154.94331
[16] Le Bihan, N. and Sangwine, S. J., Quaternion principal component analysis of color images, in Proceedings 2003 International Conference on Image Processing (Cat. No. 03CH37429), , Vol.1, IEEE, 2003, pp. 809-812.
[17] Liu, Q., Ling, S., and Jia, Z., Randomized quaternion singular value decomposition for low-rank matrix approximation, SIAM J. Sci. Comput., 44 (2022), pp. A870-A900, doi:10.1137/21M1418319. · Zbl 07566192
[18] Martin, C. D., Shafer, R., and LaRue, B., An order-p tensor factorization with applications in imaging, SIAM J. Sci. Comput., 35 (2013), pp. A474-A490, doi:10.1137/110841229. · Zbl 1273.15032
[19] Miron, S., Flamant, J., Le Bihan, N., Chainais, P., and Brie, D., Quaternions in signal and image processing: A comprehensive and objective overview, IEEE Signal Process. Mag., 40 (2023), pp. 26-40.
[20] Navarro-Moreno, J., Fernandez-Alcala, R. M., Took, C. C., and Mandic, D. P., Prediction of wide-sense stationary quaternion random signals, Signal Process., 93 (2013), pp. 2573-2580.
[21] Ng, M. K., Iterative Methods for Toeplitz Systems, , Oxford University Press, New York, 2004. · Zbl 1059.65031
[22] Ng, M. K. and Chan, R. H., Fast iterative methods for least squares estimations, Numer. Algorithms, 6 (1994), pp. 353-378. · Zbl 0796.65150
[23] Pan, J. and Ng, M. K., Separable quaternion matrix factorization for polarization images, SIAM J. Imaging Sci., 16 (2023), pp. 1281-1307. · Zbl 1521.65033
[24] Pei, S. C. and Cheng, C. M., Color image processing by using binary quaternion-moment-preserving thresholding technique, IEEE Trans. Image Process., 8 (1999), pp. 614-628.
[25] Pei, S., Ding, J., and Chang, J., Efficient implementation of quaternion Fourier transform, convolution, and correlation by -D complex FFT, IEEE Trans. Signal Process., 49 (2001), pp. 2783-2797. · Zbl 1369.65190
[26] Roşca, D., Morawiec, A., and De Graef, M., A new method of constructing a grid in the space of D rotations and its applications to texture analysis, Model. Simul. Mater. Sci. Eng., 22 (2014), 075013.
[27] Sangwine, S. J., Fourier transforms of colour images using quaternion or hypercomplex, numbers, Electron. Lett., 32 (1996), pp. 1979-1980.
[28] Shoemake, K., Animating rotation with quaternion curves, in Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques, , 1985, pp. 245-254.
[29] Song, G., Ng, M. K., and Zhang, X., Robust tensor completion using transformed tensor singular value decomposition, Numer. Linear Algebra Appl., 27 (2020), e2299. · Zbl 07217207
[30] Took, C. C. and Mandic, D. P., A quaternion widely linear adaptive filter, IEEE Trans. Signal Process., 58 (2010), pp. 4427-4431. · Zbl 1392.94488
[31] Zhang, F., Quaternions and matrices of quaternions, Linear Algebra Appl., 251 (1997), pp. 21-57. · Zbl 0873.15008
[32] Zhang, X. and Ng, M. K., Low rank tensor completion with Poisson observations, IEEE Trans. Pattern Anal. Mach. Intell., 44 (2021), pp. 4239-4251.
[33] Zhang, Z. and Aeron, S., Exact tensor completion using t-SVD, IEEE Trans. Signal Process., 65 (2017), pp. 1511-1526. · Zbl 1414.94741
[34] Zhang, Z., Ely, G., Aeron, S., Hao, N., and Kilmer, M., Novel methods for multilinear data completion and de-noising based on tensor-SVD, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, , 2014, pp. 3842-3849.
[35] Zheng, M. and Ni, G., Block Diagonalization of Block Circulant Quaternion Matrices and the Fast Calculation for T-product of Quaternion Tensors, preprint, arXiv:2212.14318, 2022.
[36] Zheng, M. and Ni, G., Approximation strategy based on the T-product for third-order quaternion tensors with application to color video compression, Appl. Math. Lett., 140 (2023), 108587. · Zbl 1524.65098
[37] Zhou, P., Lu, C., Lin, Z., and Zhang, C., Tensor factorization for low-rank tensor completion, IEEE Trans. Image Process., 27 (2017), pp. 1152-1163. · Zbl 1409.94796
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.