×

Category decomposition of \(\operatorname{Rep}_k( \mathrm{SL}_n(F))\). (English) Zbl 1506.22013

Summary: Let \(F\) be a non-archimedean local field with residual characteristic \(p\), and \(k\) an algebraically closed field of characteristic \(\ell \neq p\). We establish a category decomposition of \(\operatorname{Rep}_k( \mathrm{SL}_n(F))\) with respect to the \(\mathrm{GL}_n(F)\)-inertially equivalent supercuspidal classes of \(\mathrm{SL}_n(F)\), and we establish a block decomposition of the supercuspidal subcategory of \(\operatorname{Rep}_k( \mathrm{SL}_n(F))\). Finally we give an example to show that in general a block of \(\mathrm{SL}_n(F)\) is not defined with respect to a unique inertially equivalent supercuspidal class of \(\mathrm{SL}_n(F)\), which is different from the case when \(\ell = 0\).

MSC:

22E50 Representations of Lie and linear algebraic groups over local fields
20C20 Modular representations and characters

References:

[1] Bonnafé, C., Representations of \(\operatorname{SL}_2( \mathbb{F}_q)\), Algebra and Applications, vol. 13 (2011), Springer-Verlag: Springer-Verlag London, Ltd., London, xxii+186 pp · Zbl 1203.22001
[2] Bushnell, C. J.; Kutzko, P. C., The Admissible Dual of \(\operatorname{GL}(N)\) via Compact Open Subgroups, Annals of Mathematics Studies, vol. 129 (1993), Princeton University Press: Princeton University Press Princeton, NJ · Zbl 0787.22016
[3] Bushnell, C. J.; Kutzko, P. C., The admissible dual of \(\operatorname{SL}(N)\) II, Proc. Lond. Math. Soc. (3), 68, 2, 317-379 (1994) · Zbl 0801.22011
[4] Cui, P., Modulo ℓ-representations of p-adic groups \(\operatorname{SL}_n(F)\): maximal simple k-types
[5] Cui, P., Supercuspidal support of irreducible modulo ℓ-representations of \(\operatorname{S} \operatorname{L}_{\operatorname{n}}(F)\)
[6] Dat, J.-F., Simple subquotients of big parabolically induced representations of p-adic groups, J. Algebra, 510, 499-507 (2018), with an Appendix: Non-uniqueness of supercuspidal support for finite reductive groups by O. Dudas · Zbl 1402.22018
[7] Geck, M., Modular Harish-Chandra series, Hecke algebras and (generalized) q-Schur algebras, (Modular Representation Theory of Finite Groups. Modular Representation Theory of Finite Groups, Charlottesville, VA, 1998 (2001), de Gruyter: de Gruyter Berlin), 1-66 · Zbl 0999.20008
[8] Helm, D., The Bernstein center of the category of smooth \(W(k) [ \operatorname{GL}_n(F)]\)-modules, Forum Math. Sigma, 4 (2016) · Zbl 1364.11097
[9] Mínguez, A.; Sécherre, V., Types modulo ℓ pour les formes intérieures de \(\operatorname{GL}_n\) sur un corps local non archimédien, Proc. Lond. Math. Soc. (3), 109, 4, 823-891 (2014), With an appendix by Vincent Sécherre et Shaun Stevens · Zbl 1302.22013
[10] Serre, J.-P., Linear Representations of Finite Groups, Graduate Texts in Mathematics, vol. 42 (1977), Springer-Verlag: Springer-Verlag New York-Heidelberg, Translated from the second French edition by Leonard L. Scot · Zbl 0355.20006
[11] Sécherre, V.; Stevens, S., Block decomposition of the category of ℓ-modular smooth representations of \(\operatorname{GL}(n, F)\) and its inner forms, Ann. Sci. Éc. Norm. Supér. (4), 49, 3, 669-709 (2016) · Zbl 1346.22009
[12] Vignéras, M.-F., Représentations ℓ-modulaires d’un groupe réductif p-adique avec \(\ell \neq p\), Progress in Mathematics, vol. 137 (1996), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA · Zbl 0859.22001
[13] Vignéras, M.-F., Induced R-representations of p-adic reductive groups, Sel. Math. New Ser., 4, 549-623 (1998), with an appendix by A. Arabia · Zbl 0943.22017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.