×

Analysis of an anaerobic digestion model in landfill with mortality term. (English) Zbl 1441.37099

Summary: We study a mathematical model of anaerobic digestion with biomass recirculation, dedicated to landfill problems, and analyze its asymptotic behavior. We show that the global attractor is composed of an infinity of non-hyperbolic equilibria. For non-monotonic growth functions, this set is non connected, which impacts the performances of the bioprocess.

MSC:

37N25 Dynamical systems in biology
93D20 Asymptotic stability in control theory
34C11 Growth and boundedness of solutions to ordinary differential equations
34D35 Stability of manifolds of solutions to ordinary differential equations
92C30 Physiology (general)
92C50 Medical applications (general)
Full Text: DOI

References:

[1] J. Andrews, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnology and Bioengineering, 10 (1968), 707-723.
[2] J. Arzate, M. Kirstein, F. Ertem, E. Kielhorn, H. Malule, P. Neubauer, M. Cruz-Bournazou and S. Junne, Anaerobic digestion model (AM2) for the description of biogas processes at dynamic feedstock loading rates, Chemie Ingenieur Technik, 89 (2017), 686-695.
[3] I. Barbalat, Systèmes d’équations différentielles d’oscillations non linéaires, Rev. Math. Pures Appl., 4 (1959), 267-270. · Zbl 0090.06601
[4] G. Bastin and D. Dochain, On-line Estimation and Adaptive Control of Bioreactors, Dynamics of Microbial Competition, Elsevier Science Publishers, New-York, 1991.
[5] B. Benyahia, T. Sari, B. Cherki and J. Harmand, Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes, Journal of Process Control, 22 (2012), 1008-1019.
[6] O. Bernard, Z. Hadj-Sadok, D. Dochain, A. Genovesi and J. P. Steyer, Dynamical model development and parameter identification for an anaerobic wastewater treatment process, Biotechnology and Bioengineering, 75 (2001), 424-438.
[7] J. Carr, Applications of Centre Manifold Theory, Springer-Verlag, 1981. · Zbl 0464.58001
[8] D. Chenu, Modélisation des transferts réactifs de masse et de chaleur dans les installations de stockage de déchets ménagers: application aux installations de type bioréacteur, PhD thesis, Institut National Polytechnique de Toulouse, France, 2007.
[9] I. Didi; H. Dib; B. Cherki, A Luenberger-type observer for the AM2 model, Journal of Process Control, 32, 117-126 (2015)
[10] D. Dochain, Automatic Control of Bioprocesses Control systems, John Wiley and Sons, 2010.
[11] G. Dollé, O. Duran, N. Feyeux, E. Frénod, M. Giacomini and C. Prud’Homme, Mathematical modeling and numerical simulation of a bioreactor landfill using Feel++, ESAIM: Proceedings and Surveys, 55 (2016), 83-110. · Zbl 1456.80001
[12] R. Fekih-Salem; J. Harmand; C. Lobry; A. Rapaport; T. Sari, Extensions of the chemostat model with flocculation, Journal of Mathematical Analysis and Applications, 397, 292-306 (2013) · Zbl 1275.92014 · doi:10.1016/j.jmaa.2012.07.055
[13] J. Harmand, C. Lobry, A. Rapaport and T. Sari, The Chemostat: Mathematical Theory of Microorganisms Cultures, ISTE Wiley, 2017. · Zbl 1384.92001
[14] S. Hassam, E. Ficara, A. Leva and J. Harmand, A generic and systematic procedure to derive a simplified model from the anaerobic digestion model, No. 1 (ADM1), Biochemical Engineering Journal, 99 (2015), 193-203.
[15] M. Hmissi, J. Harmand, V. Alcaraz-Gonzalez and H. Shayeb, Evaluation of alkalinity spatial distribution in an up-flow fixed bed anaerobic digester, Water Science and Technology, 77 (2018), 948-959.
[16] S. J. Jang and J. Baglama, Nutrient-plankton models with nutrient recycling, Computers and Mathematics with Applications, 49 (2005), 375-387. · Zbl 1139.92317
[17] M. Loreau, Material cycling and the stability of ecosystems, The American Naturalist, 143 (1994), 508-513.
[18] J. Monod, La technique de la culture continue: Théorie et applications, Ann. Inst. Pasteur, Lille, 79 (1950), 390-410.
[19] L. Perko, Differential Equations and Dynamical Systems, Springer, 3rd ed., 2011. · Zbl 0717.34001
[20] A. Rapaport, T. Bayen, M. Sebbah, A. Donoso-Bravo and A. Torrico, Dynamical modelling and optimal control of landfills, Mathematical Models and Methods in Applied Sciences, 26 (2016), 901-929. · Zbl 1335.49064
[21] A. Rapaport, T. Nidelet, S. El Aida and J. Harmand, About biomass overyielding of mixed cultures in batch processes, Prepint hal, (2019). · Zbl 1435.92040
[22] A. Rapaport, T. Nidelet and J. Harmand, About biomass overyielding of mixed cultures in batch processes, in, 8th IFAC Conference on Foundations of Systems Biology in Engineering (FOSBE), Valencia, Spain, 15-18 Oct., (2019). · Zbl 1435.92040
[23] M. Rouez, Dégradation anaérobie de déchets solides: Caractérisation, facteurs d’influence et modélisations, PhD thesis, Institut National des Sciences Appliquées, Lyon, France, 2008.
[24] W. Walter, Ordinary Differential Equations, Springer, 1998. · Zbl 0991.34001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.