×

Machine learning in cardiovascular flows modeling: predicting arterial blood pressure from non-invasive 4D flow MRI data using physics-informed neural networks. (English) Zbl 1441.76149

Summary: Advances in computational science offer a principled pipeline for predictive modeling of cardiovascular flows and aspire to provide a valuable tool for monitoring, diagnostics and surgical planning. Such models can be nowadays deployed on large patient-specific topologies of systemic arterial networks and return detailed predictions on flow patterns, wall shear stresses, and pulse wave propagation. However, their success heavily relies on tedious pre-processing and calibration procedures that typically induce a significant computational cost, thus hampering their clinical applicability. In this work we put forth a machine learning framework that enables the seamless synthesis of non-invasive in-vivo measurement techniques and computational flow dynamics models derived from first physical principles. We illustrate this new paradigm by showing how one-dimensional models of pulsatile flow can be used to constrain the output of deep neural networks such that their predictions satisfy the conservation of mass and momentum principles. Once trained on noisy and scattered clinical data of flow and wall displacement, these networks can return physically consistent predictions for velocity, pressure and wall displacement pulse wave propagation, all without the need to employ conventional simulators. A simple post-processing of these outputs can also provide a relatively cheap and effective way for estimating Windkessel model parameters that are required for the calibration of traditional computational models. The effectiveness of the proposed techniques is demonstrated through a series of prototype benchmarks, as well as a realistic clinical case involving in-vivo measurements near the aorta/carotid bifurcation of a healthy human subject.

MSC:

76Z05 Physiological flows
68T05 Learning and adaptive systems in artificial intelligence
92C35 Physiological flow
92C55 Biomedical imaging and signal processing

References:

[1] Rose, G. A.; Blackburn, H.; Gillum, R.; Prineas, R., Cardiovascular survey methods (1982), WHO: WHO Geneva, Switzerland
[2] Kak, A. C.; Slaney, M.; Wang, G., Principles of computerized tomographic imaging, Med. Phys., 29, 1, 107 (2002)
[3] Haris, M.; Singh, A.; Cai, K.; Kogan, F.; McGarvey, J.; DeBrosse, C.; Zsido, G. A.; Witschey, W. R.; Koomalsingh, K.; Pilla, J. J., A technique for in vivo mapping of myocardial creatine kinase metabolism, Nature Med., 20, 2, 209 (2014)
[4] Formaggia, L.; Quarteroni, A.; Veneziani, A., Cardiovascular Mathematics: Modeling and simulation of the circulatory system (2010), Springer Science & Business Media
[5] Figueroa, C. A.; Vignon-Clementel, I. E.; Jansen, K. E.; Hughes, T. J.; Taylor, C. A., A coupled momentum method for modeling blood flow in three-dimensional deformable arteries, Comput. Methods Appl. Mech. Engrg., 195, 41-43, 5685-5706 (2006) · Zbl 1126.76029
[6] Reymond, P.; Merenda, F.; Perren, F.; Rufenacht, D.; Stergiopulos, N., Validation of a one-dimensional model of the systemic arterial tree, Amer. J. Physiol. Heart Circ. Physiol., 297, 1, H208-H222 (2009)
[7] Grinberg, L.; Cheever, E.; Anor, T.; Madsen, J. R.; Karniadakis, G., Modeling blood flow circulation in intracranial arterial networks: A comparative 3D/1D simulation study, Ann. Biomed. Eng., 39, 1, 297-309 (2011)
[8] Stefanovska, A., Physics of the human cardiovascular system, Contemp. Phys., 40, 1, 31-55 (1999)
[9] Ma, Y.; Choi, J.; Hourlier-Fargette, A.; Xue, Y.; Chung, H. U.; Lee, J. Y.; Wang, X.; Xie, Z.; Kang, D.; Wang, H., Relation between blood pressure and pulse wave velocity for human arteries, Proc. Natl. Acad. Sci., 115, 44, 11144-11149 (2018)
[10] O’Rourke, M., Mechanical principles in arterial disease, Hypertension, 26, 1, 2-9 (1995)
[11] Chan, C.; Poon, C.; Wong, R. C.; Zhang, Y., A hybrid body sensor network for continuous and long-term measurement of arterial blood pressure, (2007 4th IEEE/EMBS International Summer School and Symposium on Medical Devices and Biosensors (2007), IEEE), 121-123
[12] Kett-White, R.; Hutchinson, P. J.; Al-Rawi, P. G.; Gupta, A. K.; Pickard, J. D.; Kirkpatrick, P. J., Adverse cerebral events detected after subarachnoid hemorrhage using brain oxygen and microdialysis probes, Neurosurgery, 50, 6, 1213-1222 (2002)
[13] Edelstein, W. A.; Hutchison, J. M.; Johnson, G.; Redpath, T., Spin warp NMR imaging and applications to human whole-body imaging, Phys. Med. Biol., 25, 4, 751 (1980)
[14] Antiga, L.; Piccinelli, M.; Botti, L.; Ene-Iordache, B.; Remuzzi, A.; Steinman, D. A., An image-based modeling framework for patient-specific computational hemodynamics, Med. Biol. Eng. Comput., 46, 11, 1097 (2008)
[15] Yushkevich, P. A.; Piven, J.; Hazlett, H. C.; Smith, R. G.; Ho, S.; Gee, J. C.; Gerig, G., User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability, Neuroimage, 31, 3, 1116-1128 (2006)
[16] CIBC, P. A., Seg3D: Volumetric Image Segmentation and Visualization (2016), Scientific Computing and Imaging Institute (SCI), Download from: http://www.seg3d.org
[17] Aaslid, R.; Markwalder, T.-M.; Nornes, H., Noninvasive transcranial doppler ultrasound recording of flow velocity in basal cerebral arteries, J. Neurosurg., 57, 6, 769-774 (1982)
[18] Mitchell, G. F.; van Buchem, M. A.; Sigurdsson, S.; Gotal, J. D.; Jonsdottir, M. K.; Kjartansson, Ó.; Garcia, M.; Aspelund, T.; Harris, T. B.; Gudnason, V., Arterial stiffness, pressure and flow pulsatility and brain structure and function: The Age, Gene/Environment Susceptibility-Reykjavik study, Brain, 134, 11, 3398-3407 (2011)
[19] Markl, M.; Frydrychowicz, A.; Kozerke, S.; Hope, M.; Wieben, O., 4D flow MRI, J. Magn. Reson. Imaging, 36, 5, 1015-1036 (2012)
[20] Plein, S.; Bloomer, T. N.; Ridgway, J. P.; Jones, T. R.; Bainbridge, G. J.; Sivananthan, M. U., Steady-state free precession magnetic resonance imaging of the heart: Comparison with segmented k-space gradient-echo imaging, J. Magn. Reson. Imaging Official J. Int. Soc. Magn. Reson. Med., 14, 3, 230-236 (2001)
[21] Barker, A. T.; Jalinous, R.; Freeston, I. L., Non-invasive magnetic stimulation of human motor cortex, Lancet, 325, 8437, 1106-1107 (1985)
[22] Urquiza, S.; Blanco, P.; Vénere, M.; Feijóo, R., Multidimensional modelling for the carotid artery blood flow, Comput. Methods Appl. Mech. Engrg., 195, 33-36, 4002-4017 (2006) · Zbl 1178.76395
[23] Sherwin, S.; Franke, V.; Peiró, J.; Parker, K., One-dimensional modelling of a vascular network in space-time variables, J. Eng. Math., 47, 3-4, 217-250 (2003) · Zbl 1200.76230
[24] Matthys, K. S.; Alastruey, J.; Peiró, J.; Khir, A. W.; Segers, P.; Verdonck, P. R.; Parker, K. H.; Sherwin, S. J., Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements, J. Biomech., 40, 15, 3476-3486 (2007)
[25] Revie, J. A.; Stevenson, D. J.; Chase, J. G.; Hann, C. E.; Lambermont, B. C.; Ghuysen, A.; Kolh, P.; Shaw, G. M.; Heldmann, S.; Desaive, T., Validation of subject-specific cardiovascular system models from porcine measurements, Comput. Methods Programs Biomed., 109, 2, 197-210 (2013)
[26] Chen, P.; Quarteroni, A.; Rozza, G., Simulation-based uncertainty quantification of human arterial network hemodynamics, Int. J. Numer. Methods Biomed. Eng., 29, 6, 698-721 (2013)
[27] Westerhof, N.; Lankhaar, J.-W.; Westerhof, B. E., The arterial Windkessel, Med. Biol. Eng. Comput., 47, 2, 131-141 (2009), URL https://doi.org/10.1007/s11517-008-0359-2
[28] Grinberg, L.; Karniadakis, G. E., Outflow boundary conditions for arterial networks with multiple outlets, Ann. Biomed. Eng., 36, 9, 1496-1514 (2008)
[29] Olufsen, M. S., Structured tree outflow condition for blood flow in larger systemic arteries, Amer. J. Physiol. Heart Circ. Physiol., 276, 1, H257-H268 (1999)
[30] Perdikaris, P.; Grinberg, L.; Karniadakis, G. E., An effective fractal-tree closure model for simulating blood flow in large arterial networks, Ann. Biomed. Eng., 43, 6, 1432-1442 (2015), URL https://doi.org/10.1007/s10439-014-1221-3
[31] Raissi, M.; Perdikaris, P.; Karniadakis, G., Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378, 686-707 (2019) · Zbl 1415.68175
[32] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Machine learning of linear differential equations using gaussian processes, J. Comput. Phys., 348, 683-693 (2017) · Zbl 1380.68339
[33] Yang, Y.; Perdikaris, P., Adversarial uncertainty quantification in physics-informed neural networks, J. Comput. Phys., 394, 136-152 (2019) · Zbl 1452.68171
[34] Zhu, Y.; Zabaras, N., Bayesian deep convolutional encoder-decoder networks for surrogate modeling and uncertainty quantification, J. Comput. Phys., 366, 415-447 (2018) · Zbl 1407.62091
[35] Reymond, P.; Bohraus, Y.; Perren, F.; Lazeyras, F.; Stergiopulos, N., Validation of a patient-specific one-dimensional model of the systemic arterial tree, Amer. J. Physiol. Heart Circ. Physiol., 301, 3, H1173-H1182 (2011)
[36] Sherwin, S.; Formaggia, L.; Peiro, J.; Franke, V., Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system, Internat. J. Numer. Methods Fluids, 43, 6-7, 673-700 (2003) · Zbl 1032.76729
[37] Lamponi, D., One dimensional and multiscale models for blood flow circulationTech. Rep. (2004), EPFL
[38] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Physics informed deep learning (part I): Data-driven solutions of nonlinear partial differential equations (2017), arXiv preprint arXiv:1711.10561
[39] Raissi, M.; Perdikaris, P.; Karniadakis, G. E., Physics informed deep learning (part II): Data-driven discovery of nonlinear partial differential equations (2017), arXiv preprint arXiv:1711.10566
[40] Tartakovsky, A. M.; Marrero, C. O.; Tartakovsky, D.; Barajas-Solano, D., Learning parameters and constitutive relationships with physics informed deep neural networks (2018), arXiv preprint arXiv:1808.03398
[41] Xiao, N.; Alastruey, J.; Alberto Figueroa, C., A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models, Int. J. Numer. Methods Biomed. Eng., 30, 2, 204-231 (2014)
[42] Stein, M., Large sample properties of simulations using latin hypercube sampling, Technometrics, 29, 2, 143-151 (1987) · Zbl 0627.62010
[43] Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A., Automatic differentiation in pytorch (2017)
[44] Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M., Tensorflow: A system for large-scale machine learning, (OSDI, Vol. 16 (2016)), 265-283
[45] Cockburn, B.; Karniadakis, G. E.; Shu, C.-W., Discontinuous Galerkin methods: Theory, computation and applications, Vol. 11 (2012), Springer Science & Business Media
[46] Ruder, S., An overview of gradient descent optimization algorithms (2016), arXiv preprint arXiv:1609.04747
[47] Kingma, D. P.; Ba, J., Adam: A method for stochastic optimization (2014), arXiv preprint arXiv:1412.6980
[48] Duchi, J.; Hazan, E.; Singer, Y., Adaptive subgradient methods for online learning and stochastic optimization, J. Mach. Learn. Res., 12, Jul, 2121-2159 (2011) · Zbl 1280.68164
[49] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010, pp. 249-256.
[50] Famiglietti, J.; Wood, E., Multiscale modeling of spatially variable water and energy balance processes, Water Resour. Res., 30, 11, 3061-3078 (1994)
[51] LeCun, Y. A.; Bottou, L.; Orr, G. B.; Müller, K.-R., Efficient backprop, (Neural Networks: Tricks of the Trade (2012), Springer), 9-48
[52] Duanmu, Z.; Chen, W.; Gao, H.; Yang, X.; Luo, X.; Hill, N. A., A one-dimensional hemodynamic model of the coronary arterial tree, Front. Physiol., 10 (2019)
[53] Audebert, C.; Bucur, P.; Vibert, E.; Gerbeau, J.-F.; Vignon-Clementel, I., Closed-loop cardiovascular system model and partial hepatectomy simulation (2015)
[54] Alastruey, J.; Moore, S.; Parker, K.; David, T.; Peiró, J.; Sherwin, S., Reduced modelling of blood flow in the cerebral circulation: Coupling 1-D, 0-D and cerebral auto-regulation models, Int. J. Numer. Methods Fluids, 56, 8, 1061-1067 (2008) · Zbl 1131.92021
[55] Ismail, M.; Wall, W. A.; Gee, M. W., Adjoint-based inverse analysis of windkessel parameters for patient-specific vascular models, J. Comput. Phys., 244, 113-130 (2013) · Zbl 1377.76044
[56] Spilker, R. L.; Taylor, C. A., Tuning multidomain hemodynamic simulations to match physiological measurements, Ann. Biomed. Eng., 38, 8, 2635-2648 (2010), URL https://doi.org/10.1007/s10439-010-0011-9
[57] Spilker, R. L.; Feinstein, J. A.; Parker, D. W.; Reddy, V. M.; Taylor, C. A., Morphometry-based impedance boundary conditions for patient-specific modeling of blood flow in pulmonary arteries, Ann. Biomed. Eng., 35, 4, 546-559 (2007), URL https://doi.org/10.1007/s10439-006-9240-3
[58] Yu, Y.-C.; Boston, J. R.; Simaan, M. A.; Antaki, J. F., Estimation of systemic vascular bed parameters for artificial heart control, IEEE Trans. Automat. Control, 43, 6, 765-778 (1998)
[59] Pant, S.; Fabrèges, B.; Gerbeau, J.-F.; Vignon-Clementel, I., A methodological paradigm for patient-specific multi-scale CFD simulations: From clinical measurements to parameter estimates for individual analysis, Int. J. Numer. Methods Biomed. Eng., 30, 12, 1614-1648 (2014)
[60] Schiavazzi, D. E.; Baretta, A.; Pennati, G.; Hsia, T.-Y.; Marsden, A. L., Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty, Int. J. Numer. Methods Biomed. Eng., 33, 3, Article e02799 pp. (2017)
[61] Perdikaris, P.; Karniadakis, G. E., Fractional-order viscoelasticity in one-dimensional blood flow models, Ann. Biomed. Eng., 42, 5, 1012-1023 (2014), URL https://doi.org/10.1007/s10439-014-0970-3
[62] Fossan, F. E.; Mariscal-Harana, J.; Alastruey, J.; Hellevik, L. R., Optimization of topological complexity for one-dimensional arterial blood flow models, J. R. Soc. Interface, 15, 149, 20180546 (2018)
[63] Rasmussen, C. E., (Bousquet, O.; von Luxburg, U.; Rätsch, G., Gaussian Processes in Machine Learning. Gaussian Processes in Machine Learning, ML Summer Schools 2003, Canberra, Australia, February 2 - 14, 2003, TÜBingen, Germany, August 4 - 16, 2003, Revised Lectures. Gaussian Processes in Machine Learning. Gaussian Processes in Machine Learning, ML Summer Schools 2003, Canberra, Australia, February 2 - 14, 2003, TÜBingen, Germany, August 4 - 16, 2003, Revised Lectures, Advanced Lectures on Machine Learning (2004), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 63-71, URL https://doi.org/10.1007/978-3-540-28650-9_4 · Zbl 1120.68436
[64] Rudy, S. H.; Kutz, J.; Brunton, S. L., Deep learning of dynamics and signal-noise decomposition with time-stepping constraints (2018), arXiv preprint arXiv:1808.02578
[65] Lakshminarayanan, B.; Pritzel, A.; Blundell, C., Simple and scalable predictive uncertainty estimation using deep ensembles, (Advances in Neural Information Processing Systems (2017)), 6402-6413
[66] Osband, I.; Aslanides, J.; Cassirer, A., Randomized prior functions for deep reinforcement learning, (Advances in Neural Information Processing Systems (2018)), 8617-8629
[67] Gelman, A.; Carlin, J. B.; Stern, H. S.; Dunson, D. B.; Vehtari, A.; Rubin, D. B., Bayesian data analysis (2013), Chapman and Hall/CRC
[68] Yang, Y.; Perdikaris, P., Physics-informed deep generative models (2018), arXiv preprint arXiv:1812.03511
[69] Zhu, Y.; Zabaras, N.; Koutsourelakis, P.-S.; Perdikaris, P., Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data (2019), arXiv preprint arXiv:1901.06314 · Zbl 1452.68172
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.