×

Bang-bang control of a prey-predator model with a stable food stock and hysteresis. (English) Zbl 1517.49002

Summary: A nonlinear partial differential control system is considered. This system arises, for instance, when modeling the evolution of populations in the vegetation-prey-predator framework. Our system accounts for the situation when the dependence of the vegetation density on the densities of prey and predators exhibits hysteretic character. At the same time, we do not allow for the diffusion of vegetation which is a reasonable assumption in many biological models of practical interest. Under a minimal set of requirements on the functions defining the hysteresis region, we first prove the existence of a solution to the corresponding (uncontrolled) system. Then, the existence of solutions for the control system is established and the bang-bang principle for it is obtained. The latter asserts the proximity of extremal solutions to a given solution of the control system.

MSC:

49J20 Existence theories for optimal control problems involving partial differential equations
49K20 Optimality conditions for problems involving partial differential equations
49J30 Existence of optimal solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)
49K40 Sensitivity, stability, well-posedness
49K30 Optimality conditions for solutions belonging to restricted classes (Lipschitz controls, bang-bang controls, etc.)
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Visintin, A.: Differential Models of Hysteresis. Appl. Math. Sci., vol. 111, Springer, Berlin (1994) · Zbl 0820.35004
[2] Kenmochi, N.; Koyama, T.; Meyer, GH, Parabolic PDEs with hysteresis and quasivariational inequalities, Nonlinear Anal., 34, 665-686 (1998) · Zbl 0944.35044 · doi:10.1016/S0362-546X(97)00592-0
[3] Krejčí, P.; Sprekels, J., A hysteresis approach to phase-field models, Nonlinear Anal., 39, 5, 569-586 (2000) · Zbl 0941.35123 · doi:10.1016/S0362-546X(98)00222-3
[4] Colli, P.; Kenmochi, N.; Kubo, M., A phase field model with temperature dependent constraint, J. Math. Anal. Appl., 256, 668-685 (2001) · Zbl 0980.35074 · doi:10.1006/jmaa.2000.7338
[5] Kenmochi, N.; Sprekels, J., Phase-field systems with vectorial order parameters including diffusional hysteresis effects, Commun. Pure Appl. Anal., 1, 4, 495-511 (2002) · Zbl 1028.35063 · doi:10.3934/cpaa.2002.1.495
[6] Krejčí, P.; Tolstonogov, AA; Timoshin, SA, A control problem in phase transition modeling, Nonlinear Differ. Equ. Appl., 22, 4, 513-542 (2015) · Zbl 1348.49014 · doi:10.1007/s00030-014-0294-x
[7] Helmers, M.; Herrmann, M., Hysteresis and phase transitions in a lattice regularization of an ill-posed forward-backward diffusion equation, Arch. Ration. Mech. Anal., 230, 1, 231-275 (2018) · Zbl 1398.35239 · doi:10.1007/s00205-018-1244-2
[8] Kubo, M., A filtration model with hysteresis, J. Differ. Equ., 201, 75-98 (2004) · Zbl 1053.35055 · doi:10.1016/j.jde.2004.02.010
[9] Krejčí, P.; O’Kane, JP; Pokrovskii, A.; Rachinskii, D., Properties of solutions to a class of differential models incorporating Preisach hysteresis operator, Physica D, 241, 2010-2028 (2012) · doi:10.1016/j.physd.2011.05.005
[10] Albers, B., Modeling the hysteretic behavior of the capillary pressure in partially saturated porous media: a review, Acta Mech., 225, 8, 2163-2189 (2014) · Zbl 1302.74129 · doi:10.1007/s00707-014-1122-4
[11] Detmann, B.; Krejčí, P.; Rocca, E., Solvability of an unsaturated porous media flow problem with thermomechanical interaction, SIAM J. Math. Anal., 48, 6, 4175-4201 (2016) · Zbl 1364.76218 · doi:10.1137/16M1056365
[12] Krejčí, P.; Timoshin, SA, Coupled ODEs control system with unbounded hysteresis region, SIAM J. Control Optim., 54, 4, 1934-1949 (2016) · Zbl 1353.49003 · doi:10.1137/15M1018915
[13] Kopfová, J.; Kopf, T., Differential equations, hysteresis, and time delay, Z. Angew. Math. Phys., 53, 4, 676-691 (2002) · Zbl 1023.35008 · doi:10.1007/s00033-002-8176-1
[14] Logemann, H.; Ryan, EP; Shvartsman, I., A class of differential-delay systems with hysteresis: Asymptotic behaviour of solutions, Nonlinear Anal., 69, 1, 363-391 (2008) · Zbl 1217.34121 · doi:10.1016/j.na.2007.05.025
[15] Gurevich, P.; Ron, E., Stability of periodic solutions for hysteresis-delay differential equations, J. Dyn. Differ. Equ., 31, 4, 1873-1920 (2019) · Zbl 1430.34078 · doi:10.1007/s10884-018-9664-0
[16] Timoshin, SA, Control system with hysteresis and delay, Syst. Control Lett., 91, 43-47 (2016) · Zbl 1337.93038 · doi:10.1016/j.sysconle.2016.02.008
[17] Aiki, T.; Kumazaki, K., Mathematical model for hysteresis phenomenon in moisture transport of concrete carbonation process, Phys. B, 407, 1424-1426 (2012) · doi:10.1016/j.physb.2011.10.016
[18] Aiki, T.; Kumazaki, K., Uniqueness of solutions to a mathematical model describing moisture transport in concrete materials, Netw. Heterog. Med., 9, 4, 683-707 (2014) · Zbl 1302.74073 · doi:10.3934/nhm.2014.9.683
[19] Aiki, T.; Timoshin, SA, Relaxation for a control problem in concrete carbonation modeling, SIAM J. Control Optim., 55, 6, 3489-3502 (2017) · Zbl 1378.49005 · doi:10.1137/17M1119251
[20] Timoshin, SA; Aiki, T., Extreme solutions in control of moisture transport in concrete carbonation, Nonlinear Anal. Real World Appl., 47, 446-459 (2019) · Zbl 1410.35263 · doi:10.1016/j.nonrwa.2018.12.003
[21] Visintin, A., Evolution problems with hysteresis in the source term, SIAM J. Math. Anal., 17, 1113-1138 (1986) · Zbl 0618.35053 · doi:10.1137/0517079
[22] Aiki, T.; Minchev, E., A prey-predator model with hysteresis effect, SIAM J. Math. Anal., 36, 6, 2020-2032 (2005) · Zbl 1086.35154 · doi:10.1137/S0036141004440186
[23] Aiki, T.; Kopfová, J., A Mathematical Model for Bacterial Growth Described by a Hysteresis Operator. Recent Advances in Nonlinear Analysis, 1-10 (2008), Hackensack: World Sci. Publ, Hackensack · Zbl 1343.35131
[24] Gurevich, P.; Shamin, R.; Tikhomirov, S., Reaction-diffusion equations with spatially distributed hysteresis, SIAM J. Math. Anal., 45, 3, 1328-1355 (2013) · Zbl 1276.35107 · doi:10.1137/120879889
[25] Timoshin, SA; Aiki, T., Control of biological models with hysteresis, Syst. Control Lett., 128, 41-45 (2019) · Zbl 1425.92164 · doi:10.1016/j.sysconle.2019.04.003
[26] Timoshin, SA; Aiki, T., Relaxation in population dynamics models with hysteresis, SIAM J. Control Optim., 59, 1, 693-708 (2021) · Zbl 1458.92070 · doi:10.1137/19M1279551
[27] Colli, P.; Sprekels, J., On a Penrose-Fife model with zero interfacial energy leading to a phase-field system of relaxed Stefan type, Ann. Mat. Pura Appl. IV. Ser., 169, 269-289 (1995) · Zbl 0852.35030 · doi:10.1007/BF01759357
[28] Gilardi, G.; Rocca, E., Convergence of phase field to phase relaxation models governed by an entropy equation with memory, Math. Methods Appl. Sci., 29, 18, 2149-2179 (2006) · Zbl 1120.80007 · doi:10.1002/mma.765
[29] Bin, MJ; Liu, ZH, Relaxation in nonconvex optimal control for nonlinear evolution hemivariational inequalities, Nonlinear Anal. Real World Appl., 50, 613-632 (2019) · Zbl 1431.49012 · doi:10.1016/j.nonrwa.2019.05.013
[30] Bin, MJ; Liu, ZH, On the “bang-bang” principle for nonlinear evolution hemivariational inequalities control systems, J. Math. Anal. Appl., 480, 1, 21 (2019) · Zbl 1425.49001 · doi:10.1016/j.jmaa.2019.07.054
[31] Van Chuong, Phan, A density theorem with an application in relaxation of non-convex-valued differential equations, J. Math. Anal. Appl., 124, 1-14 (1987) · Zbl 0657.35128 · doi:10.1016/0022-247X(87)90019-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.