×

With Andrzej Lasota there and back again. The XVII annual lecture dedicated to the memory of Professor Andrzej Lasota. (English) Zbl 07904701

Summary: The paper below is a written version of the 17th Andrzej Lasota Lecture presented on January 12th, 2024 in Katowice. During the lecture we tried to show the impact of Andrzej Lasota’s results on the author’s research concerning various fields of mathematics, including chaos and ergodicity of dynamical systems, Markov operators and semigroups and partial differential equations.

MSC:

35-02 Research exposition (monographs, survey articles) pertaining to partial differential equations
35-03 History of partial differential equations
01A07 Ethnomathematics (general)
35F25 Initial value problems for nonlinear first-order PDEs
37A05 Dynamical aspects of measure-preserving transformations
37L40 Invariant measures for infinite-dimensional dissipative dynamical systems
47D06 One-parameter semigroups and linear evolution equations
60J76 Jump processes on general state spaces
92D25 Population dynamics (general)

References:

[1] J. Auslander and J.A. Yorke, Interval maps, factors of maps and chaos, Tohoku Math. J. (2) 32 (1980), 177-188. · Zbl 0448.54040
[2] A. Bobrowski, T. Lipniacki, K. Pichór, and R. Rudnicki, Asymptotic behavior of distributions of mRNA and protein levels in a model of stochastic gene expression, J. Math. Anal. Appl. 333 (2007), 753-769. · Zbl 1115.92018
[3] A. Bobrowski and R. Rudnicki, On convergence and asymptotic behaviour of semi-groups of operators, Philos. Trans. Roy. Soc. A 378 (2020), 20190613, 18 pp.
[4] F. Comets, S. Popov, G.M. Schütz, and M. Vachkovskaia, Billiards in a general domain with random reflections, Arch. Ration. Mech. Anal. 191 (2009), 497-537. · Zbl 1186.37049
[5] M.H.A. Davis, Piecewise-deterministic Markov processes: a general class of nondiffusion stochastic models, J. Roy. Statist. Soc. Ser. B 46 (1984), 353-388. · Zbl 0565.60070
[6] R.L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed., Addison-Wesley Stud. Nonlinearity, Addison-Wesley Publishing Company, Redwood City, CA, 1989. · Zbl 0695.58002
[7] H.M. Hilden and L.J. Wallen, Some cyclic and non-cyclic vectors of certain operators, Indiana Univ. Math. J. 23 (1974), 557-565. · Zbl 0274.47004
[8] A. Lasota, Invariant measures and a linear model of turbulence, Rend. Sem. Mat. Univ. Padova 61 (1979), 40-48. · Zbl 0459.28025
[9] A. Lasota, Stable and chaotic solutions of a first order partial differential equation, Nonlinear Anal. 5 (1981), 1181-1193. · Zbl 0523.35015
[10] A. Lasota, Asymptotic stability of some nonlinear Boltzmann-type equations, J. Math. Anal. Appl. 268 (2002), 291-309. · Zbl 1042.35056
[11] A. Lasota and M.C. Mackey, Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, Appl. Math. Sci., 97, Springer-Verlag, New York, 1994. · Zbl 0784.58005
[12] A. Lasota and R. Rudnicki, Asymptotic behaviour of semigroups of positive operators on C(X), Bull. Polish Acad. Sci. Math. 36 (1988), 151-159. · Zbl 0676.47021
[13] A. Lasota and J. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481-488. · Zbl 0298.28015
[14] A. Lasota and J. Yorke, On the existence of invariant measures for transformations with strictly turbulent trajectories, Bull. Polish Acad. Sci. Math. 25 (1977), 233-238. · Zbl 0357.28018
[15] A. Lasota and J. Yorke, Exact dynamical systems and the Frobenius-Perron operator, Trans. Amer. Math. Soc. 273 (1982), 375-384. · Zbl 0524.28021
[16] A. Lasota and J. Yorke, When the long time behavior is independent of the initial density, SIAM J. Math. Anal. 27 (1996), 221-240. · Zbl 0846.47005
[17] B. Lods, M. Mokhtar-Kharroubi, and R. Rudnicki, Invariant density and time asymptotics for collisionless kinetic equations with partly diffuse boundary operators, Ann. Inst. H. Poincaré C Anal. Non Linéaire 37 (2020), 877-923. · Zbl 1439.82037
[18] M.C. Mackey and R. Rudnicki, Asymptotic similarity and Malthusian growth in autonomous and nonautonomous populations, J. Math. Anal. Appl. 187 (1994), 548-566. · Zbl 0823.92022
[19] M.C. Mackey and R. Rudnicki, A new criterion for global stability of cell simultaneous cell replication and maturation processes, J. Math. Biol. 38 (1999), 195-219. · Zbl 0980.92008
[20] M. Mokhtar-Kharroubi and R. Rudnicki, On asymptotic stability and sweeping of collisionless kinetic equations, Acta Appl. Math. 147 (2017), 19-38. · Zbl 1369.82030
[21] G. Pianigiani and J.A. Yorke, Expanding maps on sets which are almost invariant: decay and chaos, Trans. Amer. Math. Soc. 252 (1979), 351-366. · Zbl 0417.28010
[22] K. Pichór and R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl. 249 (2000), 668-685. · Zbl 0965.47026
[23] K. Pichór and R. Rudnicki, Asymptotic decomposition of substochastic operators and semigroups, J. Math. Anal. Appl. 436 (2016), 305-321. · Zbl 1335.47026
[24] K. Pichór and R. Rudnicki, Asymptotic decomposition of substochastic semigroups and applications, Stoch. Dyn. 18 (2018), 1850001, 18 pp. · Zbl 1508.47098
[25] K. Pichór and R. Rudnicki, Stability of stochastic semigroups and applications to Stein’s neuronal model, Discrete Contin. Dyn. Syst. Ser. B 23 (2018), 377-385. · Zbl 1517.47080
[26] K. Pichór and R. Rudnicki, Applications of stochastic semigroups to cell cycle models, Discrete Contin. Dyn. Syst. Ser. B 24 (2019), 2365-2381. · Zbl 07086490
[27] K. Pichór and R. Rudnicki, Dynamics of antibody levels: asymptotic properties, Math. Methods Appl. Sci. 43 (2020), 10490-10499. · Zbl 1491.92119
[28] K. Pichór and R. Rudnicki, Cell cycle length and long-time behavior of an age-size model, Math. Methods Appl. Sci. 45 (2022), 5797-5820. · Zbl 07766879
[29] K. Pichór and R. Rudnicki, Asymptotic properties of a general model of immune status, SIAM J. Appl. Math. 83 (2023), 172-193. · Zbl 1525.47073
[30] R. Rudnicki, Invariant measures for the flow of a first order partial differential equation, Ergodic Theory Dynam. Systems 5 (1985), 437-443. · Zbl 0566.28013
[31] R. Rudnicki, Asymptotic properties of the iterates of positive operators on C(X), Bull. Polish Acad. Sci. Math. 34 (1986), 181-187. · Zbl 0604.47018
[32] R. Rudnicki, Strong ergodic properties of a first-order partial differential equation, J. Math. Anal. Appl. 133 (1988), 14-26. · Zbl 0673.35012
[33] R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Polish Acad. Sci. Math. 43 (1995), 245-262. · Zbl 0838.47040
[34] R. Rudnicki, Chaos for some infinite-dimensional dynamical systems, Math. Methods Appl. Sci. 27 (2004), 723-738. · Zbl 1156.37322
[35] R. Rudnicki, Chaoticity of the blood cell production system, Chaos 19 (2009), 043112, 6 pp. · Zbl 1311.92067
[36] R. Rudnicki, Chaoticity and invariant measures for a cell population model, J. Math. Anal. Appl. 393 (2012), 151-165. · Zbl 1308.92088
[37] R. Rudnicki, An ergodic theory approach to chaos, Discrete Contin. Dyn. Syst. 35 (2015), 757-770. · Zbl 1408.37134
[38] R. Rudnicki, Models and Methods Mathematical Biology. Part II: Probabilistic Models, (in Polish), Księgozbiór Matematyczny 4, IMPAN, Warszawa, 2022. (Modele i Metody Biologii Matematycznej. Część II: Modele Probabilistyczne.)
[39] R. Rudnicki, Ergodic properties of a semilinear partial differential equation, J. Differential Equations 372 (2023), 235-253. · Zbl 1527.37085
[40] R. Rudnicki and A. Tomski, On a stochastic gene expression with pre-mRNA, mRNA and protein contribution, J. Theoret. Biol. 387 (2015), 54-67. · Zbl 1343.92171
[41] R. Rudnicki and M. Tyran-Kamińska, Piecewise Deterministic Processes in Biological Models, SpringerBriefs Appl. Sci. Technol., Math. Methods, Springer, Cham, 2017. · Zbl 1376.92002
[42] R. Rudnicki and P. Zwoleński, Model of phenotypic evolution in hermaphroditic populations, J. Math. Biol. 70 (2015), 1295-1321. · Zbl 1316.92056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.