×

Proof of conjectures of Sun on double basic hypergeometric sums. (English) Zbl 1533.11007

Summary: In this paper, we study some \(q\)-congruences on double basic hypergeometric sums. With the help of ‘creative microscoping’ method and several summation and transformation formulas for basic hypergeometric series, we confirmed several conjectures posed by Zhi-Wei Sun.

MSC:

11A07 Congruences; primitive roots; residue systems
11B65 Binomial coefficients; factorials; \(q\)-identities
33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\)
Full Text: DOI

References:

[1] Bauer, G., Von den Coefficienten der Reihen von Kugelfunctionen einer Variablen. J. Reine Angew. Math., 101-121 (1859) · ERAM 056.1478cj
[2] Fang, J.-P.; Guo, V. J.W., Two \(q\)-congruences involving double basic hypergeometric sums. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. (2022) · Zbl 1480.11002
[3] Gasper, G.; Rahman, M., Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications (2004), Cambridge University Press · Zbl 1129.33005
[4] Gosper, W., Strip mining in the abandoned orefields of nineteenth century mathematics, 261-284 · Zbl 0762.05009
[5] Gu, C.-Y.; Guo, V. J.W., A \(q\)-analogue of a hypergeometric congruence. Bull. Aust. Math. Soc., 294-298 (2020) · Zbl 1440.33017
[6] Guo, V. J.W., A \(q\)-analogue of the (L.2) supercongruence of Van Hamme. J. Math. Anal. Appl., 749-761 (2018) · Zbl 1405.33021
[7] Guo, V. J.W., \(q\)-analogues of some supercongruences related to Euler numbers. J. Differ. Equ. Appl., 58-72 (2022) · Zbl 1495.11039
[8] Guo, V. J.W.; Zudilin, W., A \(q\)-microscope for supercongruences. Adv. Math., 329-358 (2019) · Zbl 1464.11028
[9] Long, L., Hypergeometric valuation identities and supercongruences. Pac. J. Math., 405-418 (2011) · Zbl 1215.33002
[10] Mortenson, E., A \(p\)-adic supercongruence conjecture of van Hamme. Proc. Am. Math. Soc., 4321-4328 (2008) · Zbl 1171.11061
[11] Sun, Z.-W., On congruences related to central binomial coefficients. J. Number Theory, 2219-2238 (2011) · Zbl 1261.11019
[12] Sun, Z.-W., A refinement of a congruence result by van Hamme and Mortenson. Ill. J. Math., 967-979 (2012) · Zbl 1292.11040
[13] Sun, Z.-W., Series with summands involving higher order harmonic numbers
[14] Swisher, H., On the supercongruence conjectures of van Hamme. Res. Math. Sci., 18 (2015) · Zbl 1337.33005
[15] Van Hamme, L., Some conjectures concerning partial sums of generalized hypergeometric series, 223-236 · Zbl 0895.11051
[16] Wilf, H. S.; Zeilberger, D., An algorithmic proof theory for hypergeometric (ordinary and “\(q\)”) multisum/integral identities. Invent. Math., 575-633 (1992) · Zbl 0739.05007
[17] Wilf, H. S.; Zeilberger, D., Rational function certification of multisum/integral/“\(q\)” identities. Bull. Am. Math. Soc. (N.S.), 148-153 (1992) · Zbl 0759.05007
[18] Zudilin, W., Ramanujan-type supercongruences. J. Number Theory, 1848-1857 (2009) · Zbl 1231.11147
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.