×

Best constants in the exceptional case of Sobolev inequalities. (English) Zbl 1097.46017

Let \((M,g)\) be a Riemannian \(n\)-dimensional compact manifold, locally conformally flat. The author studies the problem of the best constant in an exponential Sobolev inequality \[ \int_M e^u dV\, \leq\, C\, \exp{(\mu\| \nabla u\| ^n_n) } \] for \(u\in H^n_1(M)\) with \(\int_M u dV = 0 \). It is proved that there exists \(C>0\) such that the above inequality holds for an explicit numerical constant \(\mu=\mu(n, \omega_n)\) where \(\omega_n= \text{ vol}(S_{n-1})\). The constant is the best possible such that the inequality holds for any \(u\in H^n_1(M)\) with \(\int_M u dV = 0 \).

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

References:

[1] Aubin, Th.: Espaces de Sobolev sur les variétés Riemanniennes. Bull. Sc. Math. 100, 149–173 (1976) · Zbl 0328.46030
[2] Aubin, Th.: Meilleures constantes dans le théorème d’inclusion de Sobolev et un théorème de Fredholm non linéaire pour la transformation conforme de la courbure scalaire, J. Funct. Anal. 32, 148–174 (1979) · Zbl 0411.46019 · doi:10.1016/0022-1236(79)90052-1
[3] Aubin, Th., Cotsiolis, A.: Equations elliptiques non linéaires sur Sn dans le cas supercritique. Bull. Sc. Math. 123, 33–45 (1999) · Zbl 0946.35030 · doi:10.1016/S0007-4497(99)80012-8
[4] Cherrier, : Une inégalité de Sobolev sur les variétés Riemanniennes. Bull. Sc. Math. 103, 353–374 (1979) · Zbl 0414.35074
[5] Collion, S.: Fonctions critiques et EDP elliptiques sur les variétés riemanniennes. Preprint de l’IEC Nancy, 2003
[6] Djadli, Z., Druet, O.: Extremal functions for optimal Sobolev inequalities on compact manifolds. Calc. Var. 12, 59–84 (2001) · Zbl 0998.58008 · doi:10.1007/s005260000044
[7] Druet, O.: The best constants problem in Sobolev inequalities. Math. Ann. 314, 327–346 (1999) · Zbl 0934.53028 · doi:10.1007/s002080050297
[8] Druet, O.: Optimal Sobolev inequalities of arbitrary order on compact riemannian manifolds. J. Funct. Anal. 159, 217–242 (1998) · Zbl 0923.46035 · doi:10.1006/jfan.1998.3264
[9] Druet, O., Hebey, E., Vaugon, M.: Sharp Sobolev-Poincare inequalities on compact Riemannian manifolds. Trans. Am. Math. Soc. 354, 1193–1213 (2002) · Zbl 0992.58017 · doi:10.1090/S0002-9947-01-02913-0
[10] Druet, O., Robert, F.: Asymptotic profile for the sub-extremals of the sharp Sobolev inequality on the sphere. Commun. Part. Diff. Eq. 26, 743–778 (2001) · Zbl 0998.58010 · doi:10.1081/PDE-100002377
[11] Druet, O., Robert, F.: Asymptotic profile and blow-up estimates on compact Riemannian manifolds. Prépublication de L’Université de Cergy-Pontoise, 2000
[12] Faget, Z.: Best constants in Sobolev inequalitites on Riemannian manifolds in the presence of symmetries. Pot. Anal. 17, 105–124 (2002) · Zbl 1044.58032 · doi:10.1023/A:1015776915614
[13] Faget, Z.: Optimal constants in critical Sobolev inequalities on Riemannian manifolds in the presence of symmetries. Ann. Global Anal. Geometry 24, 161–200 (2003) · Zbl 1035.46023 · doi:10.1023/A:1024410428935
[14] Hebey, E.: Fonctions extrémales pour une inégalité de Sobolev optimale dans la classe conforme de la sphère. J. de Mathématiques Pures et Appliquées 77, 721–733 (1998) · Zbl 0914.53026 · doi:10.1016/S0021-7824(98)80006-8
[15] Hebey, E.: Nonlinear analysis on manifolds: Sobolev spaces and inequalities. Courant Institute of Mathematical Sciences Lecture Notes in Mathematics 5, 1999 · Zbl 0981.58006
[16] Hebey, E., Vaugon, M.: Meilleures constantes dans les théorèmes d’inclusion de Sobolev et multiplicité pour les problèmes de Niremberg et Yamabe. In. Univ. Math. J. 41, 377–407 (1992) · Zbl 0764.53029 · doi:10.1512/iumj.1992.41.41021
[17] Hebey, E., Vaugon, M.: The best constant problem in the Sobolev imbedding theorem for complete Riemannian manifolds. Duke Math. J. 79, 235–279 (1995) · Zbl 0839.53030 · doi:10.1215/S0012-7094-95-07906-X
[18] Hebey, E., Vaugon, M.: Meilleures constantes dans le théorème d’inclusion de Sobolev. Ann. Inst. Henri Poincaré, Analyse non-linéaire 13, 57–93 (1996) · Zbl 0849.53035
[19] Hebey, E., Vaugon, M.: Sobolev spaces in the presence of symmetries. J. Math. Pures Appl. 76, 859–881 (1997) · Zbl 0886.58003 · doi:10.1016/S0021-7824(97)89975-8
[20] Humbert, E.: Extremal functions for the L2-Nash inequality. Preprint de l’université de Cergy-Pontoise, 1999
[21] Spivak, M.: A comprehensive introduction to differential geometry, vol 1, 1979 · Zbl 0439.53003
[22] Trudinger, N.: On Harnack type inequalities and their applications to quasilinear elliptic equations. Commun. Pure App. Math. 20, 721–747 (1967) · Zbl 0153.42703 · doi:10.1002/cpa.3160200406
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.