×

Best constants for higher-order Rellich inequalities in \(L^{p}(\Omega )\). (English) Zbl 1130.46015

The main goal of this note is to improve the Rellich inequalities
\[ \int_{\mathbb R^n} {{| \Delta^m u| ^p }\over{| x| ^\gamma}}\,dx \geq A(2m, \gamma) \int_{\mathbb R^n} {{| u| ^p }\over{| x| ^{\gamma + ( 2mp ) }}}\,dx \tag{1} \]
and
\[ \int_{\mathbb R^n} {{| \nabla^m u| ^p}\over{| x| ^\gamma}}\,dx \geq A(2m, \gamma) \int_{\mathbb R^n} {{| u| ^p}\over{| x| ^{\gamma + (2m+1)p }}}\,dx \tag{2} \]
by adding a sharp non-negative term to the respective right-hand sides.
Precisely, let \(M\) be a Riemannian manifold of dimension \(N \geq 2, \) a domain \(\Omega \subset M,\) a closed, piecewise smooth surface \({\mathcal K}\) of codimension \(k, \) \(1\leq k \leq N\), and the distance function \(d(x)= \text{dist} (x,{\mathcal K}) \), which is assumed to be bounded in \(\Omega.\) The author establishes a Rellich inequality of the form
\[ \int_{\Omega} {{| \Delta^{{m}\over{2} } u| ^p \,}\over{d^\gamma}}\,dx \geq A(m, \gamma) \int_{\Omega} {{| u| ^p \,}\over{d^{\gamma + 2mp }}}\,dx +B(m, \gamma) \sum_{i=1}^{\infty}\int_{\Omega} V_i | u| ^p \,dx \tag{3} \]
for all \(u \in C^\infty_0 (\Omega\!-\!{\mathcal K}),\,\) where at each step he considers an optimal function \(V_i(x) \) and a sharp constant \(B(m,\gamma).\) We point out that the quantity \(| \Delta u| ^{{m}\over{2}}\) is considered as \(| \nabla \Delta u | ^{{{(m-1)}\over{2} }} \) when \(m \) is odd and observe that in \((3) \) instead of \(| x| \) the author puts the distance function \(d(x)= \text{dist} (x,{\mathcal K}).\)
In a technical theorem, the optimality of the constants and exponents is studied.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
35J35 Variational methods for higher-order elliptic equations
26D10 Inequalities involving derivatives and differential and integral operators

References:

[1] Adimurthi Esteban M.J. (2005) An improved Hardy-Sobolev inequality in W 1,p and its application to Schrödinger operators. NoDEA. Nonlinear Diff. Equat. Appl. 12, 243–263 · Zbl 1089.35035 · doi:10.1007/s00030-005-0009-4
[2] Ambrosio L., Soner H.M. (1996) Level set approach to mean curvature flow in arbitrary codimension. J. Diff. Geometry 43, 693–737 · Zbl 0868.35046
[3] Barbatis G. (2006) Improved Rellich inequalities for the polyharmonic operator. Indiana Univ. Math. J. 55:1401–1422 · Zbl 1225.31006 · doi:10.1512/iumj.2006.55.2752
[4] Barbatis G., Filippas S., Tertikas A. (2003) Series expansion for L p Hardy inequality. Indiana Univ. Math. J. 52, 171–190 · Zbl 1035.26014 · doi:10.1512/iumj.2003.52.2207
[5] Barbatis G., Tertikas A. (2006) On a class of Rellich inequalities. J. Comp. Appl. Math. 194, 156–172 · Zbl 1097.35039 · doi:10.1016/j.cam.2005.06.020
[6] Brezis H., Vázquez J.-L. (1997) Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Univ. Comp. Madrid 10, 443–469
[7] Davies E.B., Hinz A.M. (1998) Explicit constants for Rellich inequalities in L p ({\(\Omega\)}). Math. Z. 227, 511–523 · Zbl 0903.58049 · doi:10.1007/PL00004389
[8] Galaktionov V. (2006) On extensions of higher-order Hardy’s inequalities. Diff. Equat. 19, 327–344 · Zbl 1212.35209
[9] Gazzola F., Grunau H.-Ch., Mitidieri E. (2004) Hardy inequalities with optimal constants and remainder terms. Trans. Am. Math. Soc. 356:2149–2168 · Zbl 1079.46021 · doi:10.1090/S0002-9947-03-03395-6
[10] Schoen, R., Yau, S.-T.: Lectures in Differential Geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, I., International Press, Somerislle (1994) · Zbl 0830.53001
[11] Tertikas, A., Zographopoulos, N.: Best constants in the Hardy–Rellich inequalities and related improvements. Adv. Math. (to appear) · Zbl 1160.26010
[12] Tidblom, J.: L p Hardy inequalities in general domains. Stockholm University Ph.D. Thesis, 2003. Available at www.math.su.se/reports/2003/4/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.