×

Degree of best approximation by trigonometric blending functions. (English) Zbl 0547.41011

The paper deals with the approximation of \(C_{2\pi}^{r,s}\)-functions (2\(\pi\) -periodic, bivariate functions h which have continuous derivatives \(D^{\rho,\sigma}h\), 0\(\leq\rho \leq r\), 0\(\leq\sigma \leq s)\) by spaces \(T_{m-1}\otimes C_{2\pi}+C_{2\pi}\otimes T_{n-1}\) of blending functions; here \(T_ k\) denotes the space of trigonometric polynomials of degree \(\leq k\) and \(C_{2\pi}\) is the vector space of univariate, continuous and 2\(\pi\) -periodic functions. The following approximation theorem is proved: For every \(h\in C_{2\pi}^{r,s}\) there exists an element \(w^*\in T_{m-1}\otimes C_{2\pi}+C_{2\pi}\otimes T_{n-1}\) such that \(\| h-w^*\|_ p\leq K_ rK_ s/m^ rn^ s\| D^{r,s}h\|_ p\) for all 1\(\leq p\leq\infty \), where \(\|.\|_ p\) denotes the \(L_ p\)-norm on \([0,2\pi]^ 2\) and the \(K_{\nu}\) are the so-called Favard constants. In addition, the order of approximation will not be changed if the approximating space is modified within a large scale. To do this, we use a result by M. von Golitschek and E. W. Cheney [Contemp. Math. 21, 125-136 (1983)].
Reviewer: M.G.de Bruin

MSC:

41A17 Inequalities in approximation (Bernstein, Jackson, Nikol’skiĭ-type inequalities)
42A10 Trigonometric approximation
41A25 Rate of convergence, degree of approximation
41A30 Approximation by other special function classes
41A15 Spline approximation
41A50 Best approximation, Chebyshev systems
41A10 Approximation by polynomials
Full Text: DOI

References:

[1] Achyeser, N., Krein, M.: Sur la meilleure approximation des fonctions périodiques dérivables au moyen de sommes trigonométriques. Compt. Rend. (Doklady) Acad. Sci. URSS15, 107-111 (1937) · Zbl 0016.30001
[2] Cheney, E.W.: Best approximation in tensor product spaces. In: Numerical analysis (G.A. Watson, Ed.), 25-32. Lect. Notes Math.773. Berlin-Heidelberg-New York: Springer 1980 · Zbl 0426.41033
[3] Cheney, E.W.: The best approximation of multivariate functions by combinations of univariate ones. In: Approximation Theory IV (C.K. Chui, L.L. Schumaker, J.D. Ward, Eds.), 1-26. New York-London: Academic Press 1983 · Zbl 0548.41015
[4] Cheney, E.W., McCabe, J.H., Phillips, G.M.: A mixed-norm bivariate approximation problem with applications to Lewanowicz operators. In: Multivariate approximation (D.C. Handscomb, Ed.), 315-323. London-New York: Academic Press 1978 · Zbl 0426.41016
[5] Favard, J.: Sur les meilleurs procédés d’approximation de certaines classes de fonctions par des polynomes trigonométriques. Bull. Sci. Math.61, 209-224 and 243-256 (1937) · JFM 63.0225.01
[6] Gilbert, J.E., Leih, T.J.: Factorization, tensor products, and bilinear forms in Banach space theory. In: Notes in Banach spaces (H.E. Lacey, Ed.), 185-305. Austin-London: University of Texas Press 1980 · Zbl 0471.46053
[7] von Golitschek, M.: Approximation of functions of two variables by the sum of two functions of one variable. In: Numerical methods of approximation theory, Vol. 5 (L. Collatz, G. Meinardus, H. Werner, Eds.). Internat. Ser. Numer. Math.52, 117-124 (1980)
[8] von Golitschek, M., Cheney, E.W.: The best approximation of bivariate functions by separable functions. Contemporary Mathematics, Vol. 21, 125-136. Providence: Amer. Math. Soc. 1983 · Zbl 0541.41023
[9] Gordon, W.J.: Distributive lattices and the approximation of multivariate functions. In: Approximation with special emphasis on spline functions (I.J. Schoenberg, Ed.), 223-277. New York: Academic Press 1969
[10] Gordon, W.J.: Blending-function methods of bivariate and multivariate interpolation and approximation. SIAM J. Numer. Anal. 8, 158-177 (1971) · Zbl 0237.41008 · doi:10.1137/0708019
[11] Halton, E.J., Light, W.A.: Existence questions in tensor product spaces. In: Approximation Theory IV (C.K. Chui, L.L. Schumaker, J.D. Ward, Eds.), 499-504. New York-London: Academic Press 1983 · Zbl 0539.41036
[12] Halton, E.J., Light, W.A.: Projections on tensor product spaces. University of Lancaster Math. Dept. Report, Lancaster, England, 1983 · Zbl 0539.41036
[13] Hardy, G.H., Rogosinski, W.W.: Fourier series. Cambridge: University Press 1968 · Zbl 0060.18208
[14] Haußmann, W., Zeller, K.: Blending interpolation and bestL 1-approximation. Arch. Math. (Basel)40, 545-552 (1983) · Zbl 0503.41003
[15] Haußmann, W., Zeller, K.: Uniqueness and non-uniqueness in bivariateL 1-approximation. In: Approximation Theory IV (C.K. Chui, L.L. Schumaker, J.D. Ward, Eds.), 509-514. New York-London: Academic Press 1983 · Zbl 0551.41035
[16] Haußmann, W., Zeller, K.: Mixed norm multivariate approximation with blending functions. In: Proceedings of the International Conference on Constructive Function Theory, Varna 1984 (Bl. Sendov et al., Eds.). To appear · Zbl 0597.41019
[17] Light, W.A., Cheney, E.W.: Some best-approximation theorems in tensor product spaces. Math. Proc. Camb. Philos. Soc.89, 385-390 (1981) · Zbl 0462.41018 · doi:10.1017/S0305004100058278
[18] Lorentz, G.G.: Approximation of functions. New York: Holt, Rinehart and Winston 1966 · Zbl 0153.38901
[19] Timan, A.F.: Theory of approximation of functions of a real variable. New York: MacMillan 1963 · Zbl 0117.29001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.