×

On the uniqueness and perturbation to the best rank-one approximation of a tensor. (English) Zbl 1317.65111

Summary: The uniqueness of the best rank-one approximation of a tensor under the Frobenius norm is a basic and important studying subject in the tensor theory. By introducing the quasi-singular value of a tensor, we present a new sufficient condition under which the best rank-one approximation of a nonzero tensor \(\underline{X}\in\mathbb{R}^{d_{1}\times d_{2}\times d_{3}}\) is unique and obtain that the set consisting of all tensors satisfying the sufficient condition is an open and dense set in \(\mathbb{R}^{d_{1}\times d_{2}\times d_{3}}\). In addition, we present a necessary and sufficient condition under which the best rank-one approximation of the sum tensor \(\underline{\tilde X}=\underline{X} + {\underline E}\) under some assumption on the tensor \(\underline{\tilde X}\in\mathbb{R}^{d_{1}\times d_{2}\times d_{3}}\) is equal to the best rank-one approximation of \({\underline X}\). Meanwhile, a numerical algorithm is proposed for computing the quasi-singular value of a tensor. Finally, several testing examples are presented to illustrate the feasibility of the computational process and the correctness of the theoretical results obtained in the paper.

MSC:

65F30 Other matrix algorithms (MSC2010)
15A03 Vector spaces, linear dependence, rank, lineability
15A69 Multilinear algebra, tensor calculus
Full Text: DOI

References:

[1] K. C. Chang, L. Q. Qi, and G. L. Zhou, {\it Singular values of a real rectangular tensor}, J. Math. Anal. Appl., 370 (2010), pp. 284-294. · Zbl 1201.15003
[2] P. Comon, {\it Tensor decompositions: State of the art and applications}, in Mathematics in Signal Processing V, J. G. McWhirter and I. K. Proudler, eds., Oxford University Press, New York, 2001, pp. 1-24. · Zbl 1014.65007
[3] I. Domanov and L. De Lathauwer, {\it On the uniqueness of the canonical polyadic decomposition of third-order tensors. Part I: Basic results and uniqueness of one factor matrix}, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 855-875. · Zbl 1282.15019
[4] I. Domanov and L. De Lathauwer, {\it On the uniqueness of the canonical polyadic decomposition of third-order tensors. Part II: Uniqueness of the overall decomposition}, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 876-903. · Zbl 1282.15020
[5] L. De Lathauwer, B. De Moor, and J. Vandewalle, {\it A multilinear singular value decomposition}, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253-1287. · Zbl 0962.15005
[6] L. De Lathauwer, B. De Moor, and J. Vandewalle, {\it On the best rank-1 and rank-\((R_1,. . . , R_N)\) approximation of higher-order tensors}, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1324-1342. · Zbl 0958.15026
[7] V. De Silva and L. H. Lim, {\it Tensor rank and the ill-posedness of the best low-rank approximation problem}, SIAM J. Matrix Anal. Appl., 30 (2008), pp. 1084-1127. · Zbl 1167.14038
[8] C. Eckart and G. Young, {\it The approximation of one matrix by another of lower rank}, Psychometrika, 1 (1936), pp. 211-218. · JFM 62.1075.02
[9] S. Friedland, {\it Best rank one approximation of real symmetric tensors can be chosen symmetric}, Front. Math. China, 8 (2013), pp. 19-40. · Zbl 1264.15026
[10] S. Friedland and G. Ottaviani, {\it The Number of Singular Vector Tuples and Uniqueness of Best Rank One Approximation of Tensors}, Found. Comput. Math., to appear; also available from arXiv:1210.8316v2, 2012. · Zbl 1326.15036
[11] R. A. Horn and C. R. Johnson, {\it Matrix Analysis}, Vol. II, Cambridge University Press, Cambridge, UK, 1986.
[12] M. Ishteva, P. A. Absil, and P. Van Dooren, {\it Jacobi algorithm for the best low multilinear rank approximation of symmetric tensors}, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 651-672. · Zbl 1273.15031
[13] M. E. Kilmer, K. Braman, N. Hao, and R. C. Hoover, {\it Third-order tensors as operators on matrices: A theoretical and computational framework with applications in imaging}, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 148-172. · Zbl 1269.65044
[14] T. G. Kolda and B. W. Bader, {\it Tensor decompositions and applications}, SIAM Rev., 51 (2009), pp. 455-500. · Zbl 1173.65029
[15] X. Kong and Y. L. Jiang, {\it Subtracting a best rank-\(1\) approximation from \(p × p × 2 (p ≥ 2)\) tensors}, Numer. Linear Algebra Appl., 19 (2012), pp. 503-523. · Zbl 1274.15002
[16] L. H. Lim, {\it Singular values and eigenvalues of tensors: A variational approach}, in Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Vol. I, Piscataway, NJ, 2005, pp. 129-132.
[17] A. H. Phan, P. Tichavsk, and A. Cichocki, {\it Low complexity damped Gauss-Newton algorithms for CANDECOMP/PARAFAC}, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 126-147. · Zbl 1365.65071
[18] B. Savas and L. Elden, {\it Handwritten digit classification using higher order singular value decomposition}, Pattern Recognition, 40 (2007), pp. 993-1003. · Zbl 1119.68188
[19] A. Stegeman, {\it A three-way Jordan canonical form as limit of low-rank tensor approximations}, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 624-650. · Zbl 1273.15013
[20] A. Stegeman and P. Comon, {\it Subtracting a best rank-\(1\) approximation may increase tensor rank}, Linear Algebra Appl., 433 (2010), pp. 1276-1300. · Zbl 1198.15018
[21] T. Zhang and G. H. Golub, {\it Rank-one approximation to high order tensor}, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 534-550. · Zbl 1001.65036
[22] Z. Y. Zhang and H. Y. Zha, {\it Structure and perturbation analysis of truncated SVDs for column-partitioned matrices}, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 1245-1262. · Zbl 0982.65041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.