×

Vertex theorems for capillary drops on support planes. (English) Zbl 0962.76014

The authors extend a famous result of H. Hopf on constant mean curvature immersions of the sphere to the case of a portion of a sphere which hangs in an edge or in a polyhedral angle and which makes prescribed contact angles on the planar bounding walls. The main result of the paper is that, under various conditions, the free surface must be a portion of a sphere provided that the number of vertices of the surface is less or equal to three. Moreover, it is shown by counterexamples that the main result cannot be extended to more than three vertices. Thus, this three vertex theorem of Finn and McCuan is sharp. The proof in the case of two vertices is based on the investigation of a conformal mapping of the surface onto a lens. By using a theorem of Joachimsthal about the curvature of coordinate lines, the result follows as in the classical proof of H. Hopf. In contrast to that proof, the authors must take care of the singular behaviour of the mapping in the corners of the lens. The proof in the case of three vertices is based entirely on a series of ingenious comparison arguments.

MSC:

76B45 Capillarity (surface tension) for incompressible inviscid fluids
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
49Q10 Optimization of shapes other than minimal surfaces
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)

References:

[1] Alexandrov, Vestnik Leningrad Univ. 1321 pp 5– (1958)
[2] Ambrazevičius, Probl. Mat. Anal. 221 pp 3– (1981)
[3] Ambrazevičius, Lithuanian Math. J. 22 pp 1– (1982)
[4] Azzam, Indian J. Pure Appl. Math. 10 pp 1453– (1979)
[5] , and : Capillary Surfaces in Wedge Domains: Behavior at the Vertex, Continuity and Discontinuity, Asymptotic Expansions, Preprint, Universität Leipzig, 1997
[6] Concus, SIAM J. Math. Anal. 27 pp 56– (1996)
[7] Courant, Methods of Mathematical Physics Vol. II pp 350– (1962) · Zbl 0099.29504
[8] : Equilibrium Capillary Surfaces, Springer-Verlag, New York, 1986 · Zbl 0583.35002
[9] Finn, Calc. Var. 4 pp 305– (1996)
[10] : Global Regularity of Solutions to the Capillarity Problem, 3 (1976), 157-175 · Zbl 0338.49008
[11] Gerhardt, J. Math. Pures Appl. 58 pp 75– (1979)
[12] Hopf, Math. Nachr. 4 pp 232– (1951) · Zbl 0042.15703 · doi:10.1002/mana.3210040122
[13] Hopf, Lecture Notes in Mathematics No. 1000 (1989) · doi:10.1007/3-540-39482-6
[14] Joachimsthal, J. reine angew. Math. 30 pp 347– (1846) · ERAM 030.0873cj · doi:10.1515/crll.1846.30.347
[15] Kontrat’ev, Differential Equations 6 pp 1831– (1970)
[16] Kontrat’ev, Differential Equations 13 pp 2026– (1977)
[17] and : Radial Limits of Capillary Surfaces, Pacific J. Math.
[18] Lieberman, Pacific J. Math. 133 pp 115– (1988) · Zbl 0669.35034 · doi:10.2140/pjm.1988.133.115
[19] Maz’ya, AMS Translations, 123 pp 141– (1984)
[20] McCuan, Pacific J. Math. 180 pp 291– (1997)
[21] Miersemann, Pacific J. Math. 157 pp 149– (1989) · Zbl 0683.49013 · doi:10.2140/pjm.1989.140.149
[22] Nitsche, Arch. Rat. Mech. An. 89 pp 1– (1985)
[23] Siegel, Pacific J. Math. 88 pp 471– (1980) · Zbl 0411.35043 · doi:10.2140/pjm.1980.88.471
[24] Simon, Pacific J. Math. 88 pp 363– (1980) · Zbl 0467.35022 · doi:10.2140/pjm.1980.88.363
[25] Tam, Pacific J. Math. 124 pp 469– (1986) · Zbl 0604.49029 · doi:10.2140/pjm.1986.124.469
[26] Ural’tseva, Vestnik Leningrad Univ. 19 pp 54– (1973)
[27] Vogel, Lecture Notes in Pure and Appl. Math. 144 pp 129– (1993)
[28] Wente, Pacific J. Math. 88 pp 387– (1980) · Zbl 0473.76086 · doi:10.2140/pjm.1980.88.387
[29] : Tubular Capillary Surfaces in a Convex Body. In: Paul Concus, K. Lancaster (Eds.), Advances in Geometric Analysis and Continuum Mechanics, 288-298, International Press, 1993 (1995) · Zbl 0854.53012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.