×

Unique asymptotics of compact ancient solutions to three-dimensional Ricci flow. (English) Zbl 1506.53101

A solution to a geometric evolution equation is called ancient if it exists for all \( t\in (-\infty, T]\) for some \(T\). They play a central role in Perelman’s work about the singularity formation in the Ricci flow. In this paper, the authors consider compact ancient solutions to the three-dimensional Ricci flow that are \(\kappa\)-non-collapsed. They prove that such solutions either form a family of shrinking round spheres or have a unique asymptotic behavior as \(t \rightarrow -\infty\), which is described in detail by the authors. This analysis applies in particular to the ancient solution constructed by G. Perelman [arXiv e-print service 2002, Paper No. 0211159, 39 p. (2002; Zbl 1130.53001)].

MSC:

53E20 Ricci flows
35K55 Nonlinear parabolic equations

Citations:

Zbl 1130.53001

References:

[1] Angenent, S.; Daskalopoulos, P.; Sešum, N. Uniqueness of two‐convex closed ancient solutions to the mean curvature flow. Preprint, 2018. arXiv: 1804.07230 [math.DG]
[2] AngenentS.; DaskalopoulosP.; SešumN.Unique asymptotics of ancient convex mean curvature flow solutions. J. Differential Geom.111 (2019) no. 3381-455. doi: https://doi.org/10.4310/jdg/1552442605 · Zbl 1416.53061 · doi:10.4310/jdg/1552442605
[3] Brendle, S. Rotational symmetry of self‐similar solutions to the Ricci flow. Invent. Math.194 (2013), no. 3, 731-764. doi: https://doi.org/10.1007/s00222‐013‐0457‐0 · Zbl 1284.53044 · doi:10.1007/s00222‐013‐0457‐0
[4] Brendle, S. Ancient solutions to the Ricci flow in dimension 3. Preprint, 2018. arXiv: 1811.02559 [math.DG]
[5] BrendleS.Ricci flow with surgery on manifolds with positive isotropic curvature. Ann. of Math. (2)190 (2019) no. 2465-559. doi: https://doi.org/10.4007/annals.2019.190.2.2 · Zbl 1423.53080 · doi:10.4007/annals.2019.190.2.2
[6] Brendle, S.; Choi, K. Uniqueness of convex ancient solutions to mean curvature flow in higher dimensions. Preprint, 2018. arXiv: 1804.00018 [math.DG]
[7] BrendleS.; ChoiK.Uniqueness of convex ancient solutions to mean curvature flow in ℝ^3. Invent. Math.217 (2019) no. 135-76. doi: https://doi.org/10.1007/s00222‐019‐00859‐4 · Zbl 1414.53059 · doi:10.1007/s00222‐019‐00859‐4
[8] Brendle, S.; Daskalopoulos, P.; Sešum, N. Uniqueness of compact ancient solutions to three‐dimensional Ricci flow. Preprint, 2020. arXiv: 2002.12240 [math.DG]
[9] BryantR. L. Ricci flow solitons in dimension three with SO(3)‐symmetries. Available at: http://www.math.duke.edu/bryant/3DRotSymRicciSolitons.pdf
[10] Chu, S.‐C.Type II ancient solutions to the Ricci flow on surfaces. Comm. Anal. Geom.15 (2007), no. 1, 195-215. · Zbl 1120.53040
[11] Daskalopoulos, P.; delPino, M.; King, J.; Sešum, N.New type I ancient compact solutions of the Yamabe flow. Math. Res. Lett.24 (2017), no. 6, 1667-1691. doi: https://doi.org/10.4310/MRL.2017.v24.n6.a5 · Zbl 1393.53058 · doi:10.4310/MRL.2017.v24.n6.a5
[12] Daskalopoulos, P.; delPino, M.; Sešum, N.Type II ancient compact solutions to the Yamabe flow. J. Reine Angew. Math.738 (2018), 1-71. doi: https://doi.org/10.1515/crelle‐2015‐0048 · Zbl 1472.53102 · doi:10.1515/crelle‐2015‐0048
[13] Daskalopoulos, P.; Hamilton, R.; Sešum, N.Classification of compact ancient solutions to the curve shortening flow. J. Differential Geom.84 (2010), no. 3, 455-464. · Zbl 1205.53070
[14] Daskalopoulos, P.; Hamilton, R.; Sešum, N.Classification of ancient compact solutions to the Ricci flow on surfaces. J. Differential Geom.91 (2012), no. 2, 171-214. · Zbl 1257.53095
[15] Daskalopoulos, P.; Sešum, N. Eternal solutions to the Ricci flow on R^2. Int. Math. Res. Not. (2006), Art. ID83610, 20 pp. doi: https://doi.org/10.1155/IMRN/2006/83610 · Zbl 1127.53057 · doi:10.1155/IMRN/2006/83610
[16] Fateev, V. A.; Onofri, E.; Zamolodchikov, Al. B. Integrable deformations of the O(3) sigma model. The sausage model. Nuclear Phys. B406 (1993), no. 3, 521-565. doi: https://doi.org/10.1016/0550‐3213(93)90001‐6 · Zbl 0990.81683 · doi:10.1016/0550‐3213(93)90001‐6
[17] Hamilton, R. S.Three‐manifolds with positive Ricci curvature. J. Differential Geom.17 (1982), no. 2, 255-306. · Zbl 0504.53034
[18] Hamilton, R. The Harnack estimate for the Ricci flow. J. Differential Geom.37 (1993), no. 1, 225-243. · Zbl 0804.53023
[19] Hamilton, R. S. The formation of singularities in the Ricci flow. Surveys in Differential Geometry, Vol. II (Cambridge, MA,1993), 7-136. International Press, Cambridge, MA, 1995. · Zbl 0867.53030
[20] Hamilton, R.Four‐manifolds with positive isotropic curvature. Comm. Anal. Geom.5 (1997), 1-92. doi: https://doi.org/10.4310/CAG.1997.v5.n1.a1 · Zbl 0892.53018 · doi:10.4310/CAG.1997.v5.n1.a1
[21] Haslhofer, R.; Hershkovits, O.Ancient solutions of the mean curvature flow. Comm. Anal. Geom.24 (2016), no. 3, 593-604. doi: https://doi.org/10.4310/CAG.2016.v24.n3.a6 · Zbl 1345.53068 · doi:10.4310/CAG.2016.v24.n3.a6
[22] King, J. R.Exact polynomial solutions to some nonlinear diffusion equations. Phys. D64 (1993), no. 1‐3, 35-65. doi: https://doi.org/10.1016/0167‐2789(93)90248‐Y · Zbl 0779.35056 · doi:10.1016/0167‐2789(93)90248‐Y
[23] Kleiner, B.; Lott, J.Singular Ricci flows I. Acta Math.219 (2017), no. 1, 65-134. doi: https://doi.org/10.4310/ACTA.2017.v219.n1.a4 · Zbl 1396.53090 · doi:10.4310/ACTA.2017.v219.n1.a4
[24] Merle, F.; Zaag, H.Optimal estimates for blowup rate and behavior for nonlinear heat equations. Comm. Pure Appl. Math.51 (1998), no. 2, 139-196. doi: https://doi.org/10.1002/(SICI)1097‐0312(199802)51:2<139::AID‐CPA2>3.0.CO;2‐C · Zbl 0899.35044 · doi:10.1002/(SICI)1097‐0312(199802)51:2<139::AID‐CPA2>3.0.CO;2‐C
[25] Perelman, G. The entropy formula for the Ricci flow and its geometric applications. Preprint, 2002. arXiv: math/0211159 [math.DG] · Zbl 1130.53001
[26] PerelmanG. Ricci flow with surgery on three‐manifolds. Preprint 2003. arXiv: math/0303109 [math.DG] · Zbl 1130.53002
[27] RosenauP. Fast and superfast diffusion processes. Phys. Rev. Lett.74 (1995) no. 71056-1059. doi: https://doi.org/10.1103/PhysRevLett.74.1056 · doi:10.1103/PhysRevLett.74.1056
[28] White, B.The nature of singularities in mean curvature flow of mean convex sets. J. Amer. Math. Soc.16 (2003), no. 1, 123-138. doi: https://doi.org/10.1090/S0894‐0347‐02‐00406‐X · Zbl 1027.53078 · doi:10.1090/S0894‐0347‐02‐00406‐X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.