×

An investigation on continuous time random walk model for bedload transport. (English) Zbl 1436.60046

Summary: Bedload particles in the armoring layer may experience a multi-scale effect and multiple mass transfer rates between mobile and immobile domains. Anomalous transport behaviors and retarded space evolution plume cannot be described by the normal diffusion equation. In this paper, we apply the continuous time random walk model with different distributions of waiting times to capture bedload transport behavior under different conditions. Experimental data indicate that fluctuations of diffusive rates for bedload transport can be captured by the truncated power law (TPL). The retarded plume evolution can be well characterized by an exponential distribution of waiting times and advection-diffusion equation with a retarded kernel. The heavy-tailed snapshots of bedload transport are interpreted in terms of mobile and immobile states.

MSC:

60G50 Sums of independent random variables; random walks
82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
60G22 Fractional processes, including fractional Brownian motion
82C70 Transport processes in time-dependent statistical mechanics

Software:

mlrnd
Full Text: DOI

References:

[1] C. Ancey, J. Heyman, A microstructural approach to bed load transport: mean behaviour and fluctuations of particle transport rates. J. Fluid. Mech. 744 (2014), 129-168. · Zbl 1416.76059
[2] D. Baleanu, A.M. Lopes, Handbook of Fractional Calculus with Applications. De Gruyter (2019). · Zbl 1410.26001
[3] B. Berkowitz, A. Cortis, M. Dentz, Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44, No 2 (2006), RG2003.
[4] S. Bochner, Harmonic Analysis and the Theory of Probability. Berkeley University Press, Berkeley CA (1960).
[5] D.N. Bradley, G.E. Tucker, D.A. Benson, Fractional dispersion in a sand bed river. J. Geophs. Res-Earth. 115, No F1 (2010), F00A09.
[6] D.K. Burnel, S.K. Hansen, J. Xu, Transient modeling of non-Fickian transport and first-order reaction using continuous time random walk. Adv. Water. Resour. 107 (2017), 370-392.
[7] A.L. Chang, H.G. Sun, Time-space fractional derivative models for CO2 transport in heterogeneous media. Fract. Calc. Appl. Anal. 21, No 1 (2018), 151-173; ; https://www.degruyter.com/view/j/fca.2018.21.issue-1/fca-2018-0010/fca-2018-0010.xml. · Zbl 1439.35522 · doi:10.1515/fca-2018-0010
[8] D. Chen, H.G. Sun, Y. Zhang Fractional dispersion equation for sediment suspension. J. Hydrol. 491 (2013), 13-22.
[9] N. Chien, Z. Wan, Mechanics of Sediment Transport. American Society of Civil Engineers (1999).
[10] M. Colombini, A decades investigation of the stability of erodible stream beds. J. Fluid. Mech. 756 (2014), 1-4.
[11] M. Dentz, H. Scher, D. Holder. B. Berkowitz, Transport behavior of coupled continuous-time random walks. Phys. Rev. E. 78, No 4 (2008), 041110.
[12] H.A. Einstein, Bedload transport as a probability problem. Sedimentation1027 (1937), C1-C105.
[13] N. Fan, Y. Xie, R. Nie, Bed load transport for a mixture of particle sizes: Downstream sorting rather than anomalous diffusion. J. Hydrol. 553 (2017), 26-34.
[14] D. Fulger, E. Scalas, G. Germano, Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation. Phys. Rev. E. 77, No 2 (2008), ID 021122.
[15] J. Gajda, M. Magdziarz, Fractional Fokker-Planck equation with tempered α-stable waiting times: Langevin picture and computer simulation. Phys. Rev. E. 82, No 1 (2010), ID 011117.
[16] H.M. Habersack, Radio-tracking gravel particles in a large braided river in New Zealand: A field test of the stochastic theory of bed load transport proposed by Einstein. Hydrol. Process. 15, No 3 (2001), 377-391.
[17] S.K. Hansen, Effective ADE models for first-order mobile-immobile solute transport: Limits on validity and modeling implications. Adv. Water. Resour. 86 (2015), 184-192.
[18] S.K. Hansen, V.V. Vesselinov, Local equilibrium and retardation revisited. Groundwater. 56, No 1 (2018), 109-117.
[19] J.K. Haschenburger, P.R. Wilcock, Partial transport in a natural gravel bed channel. Water. Resour. Res. 39, No 1 (2003), ID 1020.
[20] V. Kiryakova, A brief story about the operators of the generalized fractional calculus. Fract. Calc. Appl. Anal. 11, No 2 (2008), 203-220; Available at: https://eudml.org/doc/11340. · Zbl 1153.26003
[21] J. Klafter, I.M. Sokolov, First Steps in Random Walks: From Tools to Applications. Oxford University Press (2011). · Zbl 1242.60046
[22] V. Kolokoltsov, V. Korolev, V. Uchaikin, Fractional stable distributions. J. Math. Sci. 105, No 6 (2001), 2569-2576. · Zbl 0994.60010
[23] I. Koponen, Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Phys. Rev. E. 52, No 1 (1995), ID 1197.
[24] M. Kotulski, Asymptotic distributions of continuous-time random walks: a probabilistic approach. J. Stat. Phys. 81, No 3-4 (1995), 777-792. · Zbl 1107.60318
[25] E. Lajeunesse, O. Devauchelle, F. Lachaussée, P. Claudin, Bedload transport in laboratory rivers: the erosion-deposition model. In: Gravel-bed Rivers: Gravel Bed Rivers and Disasters, Wiley-Blackwell, Oxford (2017), 415-438.
[26] Z.P. Li, H.G. Sun, Y. Zhang, D. Chen, T.S. Renat, Continuous time random walk model for non-uniform bed-load transport with heavy-tailed hop distances and waiting times. J. Hydrol. 578 (2019), ID 124057.
[27] D.V. Malmon, T. Dunne, S.L. Reneau, Predicting the fate of sediment and pollutants in river floodplains. Environ. Sci. Technol. 36, No 9 (2002), 2026-2032.
[28] R.N. Mantegna, E.H. Stanley, Stochastic process with ultraslow convergence to a Gaussian: The truncated Lévy flight. Phys. Rev. Lett. 73, No 22 (1994), ID 2946. · Zbl 1020.82610
[29] R.L. Martin, D.J. Jerolmack, R. Schumer, The physical basis for anomalous diffusion in bed load transport. J. Geophs. Res.-Earth. 117, No F1 (2012), ID F01018.
[30] M.M. Meerschaert, Y. Zhang, B. Baeumer, Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 35, No 17 (2008), ID 17403.
[31] M.M. Meerschaert, Y. Zhang, B. Baeumer, Particle tracking for fractional diffusion with two time scales. Comput. Math. Appl. 59, No 3 (2010), 1078-1086. · Zbl 1189.65240
[32] G.L. Morris, J.Fan, Reservoir Sedimentation Handbook: Design and Management of Dams, Reservoirs, and Watersheds for Sustainable Use. McGraw Hill Professional (1998).
[33] C.B. Phillips, R.L. Martin, D.J. Jerolmack, Impulse framework for unsteady flows reveals superdiffusive bed load transport. Geophys. Res. Lett. 40, No 7 (2013), 1328-1333.
[34] L. Ridolfi, P. D’Odorico, F. Laio, Noise-Induced Phenomena in the Environmental Sciences. Cambridge University Press (2011). · Zbl 1283.60073
[35] J.C. Ritchie, J.R. McHenry, Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: A review. J. Environ. Qual. 19, No 2 (1990), 215-233.
[36] J.C. Roseberry, M.W. Schmeeckle, D.J. Furbish, A probabilistic description of the bed load sediment flux: 2. Particle activity and motion. J. Geophs. Res-Earth. 117, No F3 (2012), ID F03032.
[37] J. Rosiński, Tempering stable processes. Stoch. Proc. Appl. 117, No 6 (2007), 677-707. · Zbl 1118.60037
[38] R. Schumer, M.M. Meerschaert, B. Baeumer, Fractional advection-dispersion equations for modeling transport at the Earth surface. J. Geophs. Res-Earth. 114, No F4 (2009), ID F00A07.
[39] R.T. Sibatov, H.G. Sun, Tempered fractional equations for quantum transport in mesoscopic one-dimensional systems with fractal disorder. Fractal. Fract. 3, No 4 (2019), ID 47.
[40] R.T. Sibatov, V.V. Uchaikin, Fractional differential approach to dispersive transport in semiconductors. Phys-Usp+. 52, No 10 (2009), ID 1019.
[41] R.T. Sibatov, V.V. Uchaikin, Truncated Lévy statistics for dispersive transport in disordered semiconductors. Commun. Nonlinear. Sci. 16, No 12 (2011), 4564-4572. · Zbl 1231.82085
[42] H.G. Sun, D. Chen, Y. Zhang, Understanding partial bed-load transport: Experiments and stochastic model analysis. J. Hydrol. 521 (2015), 196-204.
[43] V.V. Uchaikin, R.T. Sibatov, Fractional Kinetics in Solids: Anomalous Charge Transport in Semiconductors, Dielectrics, and Nanosystems. World Scientific (2013). · Zbl 1277.82006
[44] P.P. Valkó, J. Abate, Comparison of sequence accelerators forthe Gaver method of numerical Laplace transform inversion. Comput. Math. Appl. 48, No 3-4 (2004), 629-636. · Zbl 1064.65152
[45] H. Voepel, R. Schumer, M.A. Hassan, Sediment residence time distributions: Theory and application from bed elevation measurements. J. Geophs. Res-Earth. 118, No 4 (2013), 2557-2567.
[46] W. Wu, Computational River Dynamics. CRC Press (2007).
[47] Y. Zhang, R.L. Martin, D. Chen, A subordinated advection model for uniform bed load transport from local to regional scales. J. Geophs. Res.-Earth. 119, No 12 (2014), 121-168.
[48] Y. Zhang, M.M. Meerschaert, Gaussian setting time for solute transport in fluvial systems. Water. Resour. Res. 47, No 8 (2011), ID W08601.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.