×

Modelling of bedload sediment transport for weak and strong regimes. (English) Zbl 1481.76251

Greiner, David (ed.) et al., Numerical simulation in physics and engineering: trends and applications. Lecture notes of the XVIII ‘Jacques-Louis Lions’ Spanish-French school, Las Palmas de Gran Canaria, Spain, June 25–29, 2018. Cham: Springer. SEMA SIMAI Springer Ser. 24, 179-189 (2021).
Summary: A two-layer shallow water type model is proposed to describe bedload sediment transport for strong and weak interactions between the fluid and the sediment. The key point falls into the definition of the friction law between the two layers, which is a generalization of those introduced in [the second author et al., ESAIM, Math. Model. Numer. Anal. 51, No. 1, 115–145 (2017; Zbl 1360.35176)]. Moreover, we prove formally that the two-layer model converges to a Saint-Venant-Exner system (SVE) including gravitational effects when the ratio between the hydrodynamic and morphodynamic time scales is small. The SVE with gravitational effects is a degenerated nonlinear parabolic system, whose numerical approximation can be very expensive from a computational point of view, see for example [the third author et al., J. Sci. Comput. 48, No. 1–3, 258–273 (2011; Zbl 1426.76408)]. In this work, gravitational effects are introduced into the two-layer system without any parabolic term, so the proposed model may be a advantageous solution to solve bedload sediment transport problems.
For the entire collection see [Zbl 1471.65004].

MSC:

76T20 Suspensions
76B70 Stratification effects in inviscid fluids
76-10 Mathematical modeling or simulation for problems pertaining to fluid mechanics
86A05 Hydrology, hydrography, oceanography
Full Text: DOI

References:

[1] Ashida, K.; Michiue, M., Study on hydraulic resistance and bedload transport rate in alluvial streams, JSCE Tokyo, 206, 59-69 (1972)
[2] Bagnold, RA, The flow of cohesionless grains in fluids, R. Soc. Lond. Philos. Trans. Ser. A. Math. Phys. Sci., 249, 964, 235-297 (1956) · Zbl 0072.20201
[3] Chanson, H., The Hydraulics of Open Channel Flow: An Introduction (2004), Oxford: Elsevier Butterworth-Heinemann, Oxford
[4] Charru, F., Selection of the ripple length on a granular bed sheared by a liquid flow, Phys. Fluids, 18, 121508 (2006) · Zbl 1146.76347 · doi:10.1063/1.2397005
[5] Einstein, HA, Formulas for the transportation of bed load, ASCE, 107, 561-575 (1942)
[6] Engelund, F.; Dresoe, J., A sediment transport model for straight alluvial channels, Nordic Hydrol., 7, 293-306 (1976) · doi:10.2166/nh.1976.0019
[7] Exner, F.: Über die wechselwirkung zwischen wasser und geschiebe in flüssen. Sitzungsber. Akad. Wissenschaften pt. IIa. Bd. 134 (1925) · JFM 52.1000.19
[8] Fernández Luque, R.; Van Beek, R., Erosion and transport of bedload sediment, J. Hydraulaul. Res., 14, 127-144 (1976) · doi:10.1080/00221687609499677
[9] Fernández-Nieto, ED; Lucas, C., Morales de Luna, T., Cordier, S.: On the influence of the thickness of the sediment moving layer in the definition of the bedload trasport formula in Exner systems. Comp, Fluids, 91, 87-106 (2014) · Zbl 1391.76403
[10] Fernández-Nieto, E.D., Morales de Luna, T., Narbona-Reina, G., Zabsonré, J.D.: Formal deduction of the Saint-Venant-Exner model including arbitrarily sloping sediment beds and associated energy. ESAIM: M2AN 51, 115-145 (2017) · Zbl 1360.35176
[11] Fowler, AC; Kopteva, N.; Oakley, C., The formation of river channel, SIAM J. Appl. Math., 67, 1016-1040 (2007) · Zbl 1117.86002 · doi:10.1137/050629264
[12] Kalinske, AA, Criteria for determining sand transport by surface creep and saltation, Trans. AGU., 23, 2, 639-643 (1942) · doi:10.1029/TR023i002p00639
[13] Kovacs, A.; Parker, G., A new vectorial bedload formulation and its application to the time evolution of straight river channels, J. Fluid Mech., 267, 153-183 (1994) · Zbl 0800.76485 · doi:10.1017/S002211209400114X
[14] Meyer-Peter, E., Müller, R.: Formulas for bedload transport. ASCE 107, 561-575 (1942). Rep. 2nd Meet. Int. Assoc. Hydraul. Struct. Res., Stockolm, pp. 39-64
[15] Michoski, C.; Dawson, C.; Mirabito, C.; Kubatko, EJ; Wirasaet, D.; Westerink, JJ, Fully coupled methods for multiphase morphodynamics, Adv. Water Resour., 59, 95-110 (2013) · doi:10.1016/j.advwatres.2013.05.002
[16] Morales de Luna, T., Castro Díaz, M.J., Parés Madroñal, C.: A Duality Method for Sediment Transport Based on a Modified Meyer-Peter & Müller Model. J. Sci. Comp. 48, 258-273 (2011) · Zbl 1426.76408
[17] Nielsen, P.: Coastal Bottom Boundary Layers and Sediment Transport. Advanced Series on Ocean Engineering, vol. 4. World Scientific Publishing, Singapore (1992)
[18] Savary, C.: Transcritical transient flow over mobile bed. Two-layer shallow-water model. PhD thesis, Université catholique de Louvain (2007)
[19] Seminara, G.; Solari, L.; Parker, G., Bed load at low Shields stress on arbitrarily sloping beds: failure of the Bagnold hypothesis, Water Resour. Res., 38, 11 (2002) · doi:10.1029/2001WR000681
[20] Spinewine, B.: Two-layer flow behaviour and the effects of granular dilatancy in dam-break induced sheet-flow. PhD Thesis n.76, Université catholique de Louvain (2005)
[21] Swartenbroekx, C., Soares-Frazão, S., Spinewine, B., Guinot, V., Zech, Y.: Hyperbolicity preserving HLL solver for two-layer shallow-water equations applied to dam-break flows. In: Dittrich, A., Koll, Ka., Aberle, J., Geisenhainer, P. (eds.). River Flow 2010, vol. 2, pp. 1379-1387. Bundesanstalt fur Wasserbau (BAW), Karlsruhe (2010)
[22] Tassi, P.; Rhebergen, S.; Vionnet, C.; Bokhove, O., A discontinuous Galerkin finite element model for morphodynamical evolution in shallow flows, Comp. Meth. App. Mech. Eng., 197, 2930-2947 (2008) · Zbl 1194.76143 · doi:10.1016/j.cma.2008.01.023
[23] Van Rijn, LC, Sediment transport (I): bed load transport, J. Hydraul. Div. Proc. ASCE, 110, 1431-1456 (1984) · doi:10.1061/(ASCE)0733-9429(1984)110:10(1431)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.