×

Bounds on mean energy in the Kuramoto-Sivashinsky equation computed using semidefinite programming. (English) Zbl 1412.35039

Summary: We present methods for bounding infinite-time averages in dynamical systems governed by nonlinear PDEs. The methods rely on auxiliary functionals, which are similar to Lyapunov functionals but satisfy different inequalities. The inequalities are enforced by requiring certain expressions to be sums of squares of polynomials, and the optimal choice of auxiliary functional is posed as a semidefinite program (SDP) that can be solved computationally. To formulate these SDPs we approximate the PDE by truncated systems of ODEs and proceed in one of two ways. The first approach is to compute bounds for the ODE systems, increasing the truncation order until bounds converge numerically. The second approach incorporates the ODE systems with analytical estimates on their deviation from the PDE, thereby using finite truncations to produce bounds for the full PDE. We apply both methods to the Kuramoto-Sivashinsky equation. In particular, we compute upper bounds on the spatiotemporal average of energy by employing polynomial auxiliary functionals up to degree six. The first approach is used for most computations, but a subset of results are checked using the second approach, and the results agree to high precision. These bounds apply to all odd solutions of period \(2\pi L\), where \(L\) is varied. Sharp bounds are obtained for \(L\leqslant 10\), and trends suggest that more expensive computations would yield sharp bounds at larger \(L\) also. The bounds are known to be sharp (to within 0.1% numerical error) because they are saturated by the simplest nonzero steady states, which apparently have the largest mean energy among all odd solutions. Prior authors have conjectured that mean energy remains \(O(1)\) for \(L \geqslant 1\) since no particular solutions with larger energy have been found. Our bounds constitute the first positive evidence for this conjecture, albeit up to finite \(L\), and they offer some guidance for analytical proofs.

MSC:

35B45 A priori estimates in context of PDEs
35A15 Variational methods applied to PDEs
90C22 Semidefinite programming
35K35 Initial-boundary value problems for higher-order parabolic equations

References:

[1] Ahmadi A A and Majumdar A 2019 DSOS and SDSOS optimization: more tractable alternatives to sum of squares and semidefinite optimization SIAM Journal on Applied Algebra and Geometry (accepted) · Zbl 1465.90061
[2] Anderson J and Papachristodoulou A 2015 Advances in computational Lyapunov analysis using sum-of-squares programming Discrete Continuous Dyn. Syst. B 20 2361-81 · Zbl 1334.37105 · doi:10.3934/dcdsb.2015.20.2361
[3] Bronski J C and Gambill T N 2006 Uncertainty estimates and L2 bounds for the Kuramoto-Sivashinsky equation Nonlinearity19 2023-39 · Zbl 1110.37062 · doi:10.1088/0951-7715/19/9/002
[4] Chernyshenko S 2017 Relationship between the methods of bounding time averages (arXiv:1704.02475v2)
[5] Chernyshenko S I, Goulart P, Huang D and Papachristodoulou A 2014 Polynomial sum of squares in fluid dynamics: a review with a look ahead Phil. Trans. R. Soc. A 372 20130350 · Zbl 1353.76021 · doi:10.1098/rsta.2013.0350
[6] Collet P, Eckmann J P, Epstein H and Stubbe J 1993 A global attracting set for the Kuramoto-Sivashinsky equation Commun. Math. Phys.152 203-14 · Zbl 0777.35073 · doi:10.1007/BF02097064
[7] Cvitanović P, Davidchack R L and Siminos E 2010 On the state space geometry of the Kuramoto-Sivashinsky flow in a periodic domain SIAM J. Appl. Dyn. Syst.9 1-33 · Zbl 1267.35027 · doi:10.1137/070705623
[8] Doering C R and Constantin P 1992 Energy dissipation in shear driven turbulence Phys. Rev. Lett.69 1648-51 · doi:10.1103/PhysRevLett.69.1648
[9] Doering C R and Constantin P 1994 Variational bounds on energy dissipation in incompressible flows: shear flow Phys. Rev. E 49 4087-99 · doi:10.1103/PhysRevE.49.4087
[10] Doering C R and Constantin P 1996 Variational bounds on energy dissipation in incompressible flows. III. Convection Phys. Rev. E 53 5957-81 · doi:10.1103/PhysRevE.53.5957
[11] Dooge A, Govaerts W and Kuznetsov Y A 2003 MatCont: a MATLAB package for numerical bifurcation analysis of ODEs ACM Trans. Math. Softw.29 141-64 · Zbl 1070.65574 · doi:10.1145/779359.779362
[12] Fantuzzi G, Goluskin D, Huang D and Chernyshenko S I 2016 Bounds for deterministic and stochastic dynamical systems using sum-of-squares optimization SIAM J. Appl. Dyn. Syst.15 1962-88 · Zbl 1356.34058 · doi:10.1137/15M1053347
[13] Fantuzzi G and Wynn A 2015 Construction of an optimal background profile for the Kuramoto-Sivashinsky equation using semidefinite programming Phys. Lett. A 379 23-32 · Zbl 1303.90078 · doi:10.1016/j.physleta.2014.10.039
[14] Gatermann K and Parrilo P A 2004 Symmetry groups, semidefinite programs, and sums of squares J. Pure Appl. Algebra192 95-128 · Zbl 1108.13021 · doi:10.1016/j.jpaa.2003.12.011
[15] Giacomelli L and Otto F 2005 New bounds for the Kuramoto-Sivashinsky equation Commun. Pure Appl. Math.58 297-318 · Zbl 1062.35113 · doi:10.1002/cpa.20031
[16] Goldman M, Josien M and Otto F 2015 New bounds for the inhomogenous Burgers and the Kuramoto-Sivashinsky equations Commun. PDE40 2237-65 · Zbl 1452.35168 · doi:10.1080/03605302.2015.1076003
[17] Goluskin D 2018 Bounding averages rigorously using semidefinite programming: mean moments of the Lorenz system J. Nonlinear Sci.28 621-51 · Zbl 1409.90133 · doi:10.1007/s00332-017-9421-2
[18] Goluskin D 2018 Bounding extreme values on attractors using sum-of-squares optimization, with application to the Lorenz attractor (arXiv:1807.09814v2)
[19] Goluskin D and Doering C R 2016 Bounds for convection between rough boundaries J. Fluid Mech.804 370-86 · Zbl 1454.76088 · doi:10.1017/jfm.2016.528
[20] Goodman J 1994 Stability of the Kuramoto-Sivashinsky and related systems Commun. Pure Appl. Math.47 293-306 · Zbl 0809.35105 · doi:10.1002/cpa.3160470304
[21] Goulart P J and Chernyshenko S 2012 Global stability analysis of fluid flows using sum-of-squares Physica D 241 692-704 · Zbl 1331.76050 · doi:10.1016/j.physd.2011.12.008
[22] Greene J M and Kim J S 1988 The steady states of the Kuramoto-Sivashinsky equation Physica D 33 99-120 · Zbl 0825.35107 · doi:10.1016/S0167-2789(98)90013-6
[23] Henrion D and Korda M 2014 Convex computation of the region of attraction of polynomial control systems IEEE Trans. Autom. Control59 297-312 · Zbl 1360.93601 · doi:10.1109/TAC.2013.2283095
[24] Holmes P, Lumley J L, Berkooz G and Rowley W 2012 One-dimensional ‘turbulence’ Turbulence, Coherent Structures, Dynamical Systems and Symmetry (Cambridge: Cambridge University Press) pp 214-35 · Zbl 1251.76001 · doi:10.1017/CBO9780511622700
[25] Holmes P J, Lumley J L, Berkooz G, Mattingly J C and Wittenberg R W 1997 Low-dimensional models of coherent structures in turbulence Phys. Rep.287 337-84 · doi:10.1016/S0370-1573(97)00017-3
[26] Huang D, Chernyshenko S, Goulart P, Lasagna D, Tutty O and Fuentes F 2015 Sum-of-squares polynomials approach to nonlinear stability of fluid flows: an example of application Proc. R. Soc. A 471 20150622 · Zbl 1371.76050 · doi:10.1098/rspa.2015.0622
[27] Hyman J M and Nicolaenko B 1986 The Kuramoto-Sivashinsky equation: a bridge between PDE’s and dynamical systems Physica D 18 113-26 · Zbl 0602.58033 · doi:10.1016/0167-2789(86)90166-1
[28] Hyman J M, Nicolaenko B and Zaleski S 1986 Order and complexity in the Kuramoto-Sivashinsky model of weakly turbulent interfaces Physica D 23 265-92 · Zbl 0621.76065 · doi:10.1016/0167-2789(86)90136-3
[29] Jansson C 2006 VSDP: a MATLAB software package for verified semidefinite programming Technical Report Hamburg University of Technology
[30] Kuramoto Y and Tsuzuki T 1975 On the formation of dissipative structures in reaction-diffusion systems: reductive perturbation approach Prog. Theor. Phys.54 687-99 · doi:10.1143/PTP.54.687
[31] Kuramoto Y and Tsuzuki T 1976 Persistent propagation of concentration waves in dissipative media far from thermal equilibrium Prog. Theor. Phys.55 356-69 · doi:10.1143/PTP.55.356
[32] Lasserre J B 2006 Convergent SDP relaxations in polynomial optimization with sparsity SIAM J. Optim.17 822-43 · Zbl 1119.90036 · doi:10.1137/05064504X
[33] Löfberg J 2004 YALMIP: a toolbox for modeling and optimization in MATLAB IEEE Int. Conf. on Computer Aided Control Systems Design(Taipei, Taiwan,) 284-9
[34] Löfberg J 2009 Pre- and post-processing sum-of-squares programs in practice IEEE Trans. Autom. Control54 1007-11 · Zbl 1367.90002 · doi:10.1109/TAC.2009.2017144
[35] Michelson D 1986 Steady solutions of the Kuramoto-Sivashinsky equation Physica D 19 89-111 · Zbl 0603.35080 · doi:10.1016/0167-2789(86)90055-2
[36] Michelson D M and Sivashinsky G I 1977 Nonlinear analysis of hydrodynamic instability in laminar flames—II. Numerical experiments Acta Astronaut.4 1207-21 · Zbl 0427.76048 · doi:10.1016/0094-5765(77)90097-2
[37] MOSEK ApS 2015 The MOSEK optimization toolbox for MATLAB manual. Version 7.1 (Revision 54)
[38] Murty K G and Kabadi S N 1987 Some NP-complete problems in quadratic and nonlinear programming Math. Program.39 117-29 · Zbl 0637.90078 · doi:10.1007/BF02592948
[39] Nicodemus R, Grossmann S and Holthaus M 1997 Improved variational principle for bounds on energy dissipation in turbulent shear flow Physica D 101 178-90 · Zbl 0895.76037 · doi:10.1016/S0167-2789(96)00210-2
[40] Nicolaenko B, Scheurer B and Temam R 1985 Some global dynamical properties of the Kuramoto-Sivashinsky equations: nonlinear stability and attractors Physica D 16 155-83 · Zbl 0592.35013 · doi:10.1016/0167-2789(85)90056-9
[41] O’Donoghue B, Chu E, Parikh N and Boyd S 2016 Conic optimization via operator splitting and homogeneous self-dual embedding J. Optim. Theory App.169 1042-68 · Zbl 1342.90136 · doi:10.1007/s10957-016-0892-3
[42] O’Donoghue B, Chu E, Parikh N and Boyd S 2017 SCS: splitting conic solver, version 2.0.2, November
[43] Otto F 2009 Optimal bounds on the Kuramoto-Sivashinsky equation J. Funct. Anal.257 2188-245 · Zbl 1194.35082 · doi:10.1016/j.jfa.2009.01.034
[44] Papachristodoulou A and Prajna S 2002 On the construction of Lyapunov functions using the sum of squares decomposition Proc. of the 41st IEEE Conf. on Decision and Control 3482-7
[45] Papageorgiou D T and Smyrlis Y S 1991 The route to chaos for the Kuramoto-Sivashinsky equation Theor. Comput. Fluid Dyn.3 15-42 · Zbl 0728.76055 · doi:10.1007/BF00271514
[46] Papp D and Yildiz S 2019 Sum-of-squares optimization without semidefinite programming SIAM Journal on Optimization (accepted) (https://epubs.siam.org/doi/abs/10.1137/17M1160124) · Zbl 1412.90114 · doi:10.1137/17M1160124
[47] Parrilo P A 2000 Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization PhD Thesis California Institute of Technology
[48] Parrilo P A 2013 Polynomial optimization, sums of squares, and applications Semidefinite Optimization and Convex Algebraic Geometry ed G Blekherman et al (Philadelphia, PA: SIAM) ch 3 pp 47-157 · Zbl 1360.90194 · doi:10.1137/1.9781611972290
[49] Plasting S C and Kerswell R R 2003 Improved upper bound on the energy dissipation rate in plane Couette flow: the full solution to Busse’s problem and the Constantin-Doering-Hopf problem with one-dimensional background field J. Fluid Mech.477 363-79 · Zbl 1063.76623 · doi:10.1017/S0022112002003361
[50] Pomeau Y, Pumir A and Pelce P 1984 Intrinsic stochasticity with many degrees of freedom J. Stat. Phys.37 39-49 · doi:10.1007/BF01012904
[51] Sivashinsky G I 1977 Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations Acta Astronaut.4 1177-206 · Zbl 0427.76047 · doi:10.1016/0094-5765(77)90096-0
[52] Sivashinsky G I and Michelson D M 1980 On irregular wavy flow of a liquid film down a vertical plane Prog. Theor. Phys.63 2112-4 · doi:10.1143/PTP.63.2112
[53] Tobasco I 2018 private communication
[54] Tobasco I, Goluskin D and Doering C R 2018 Optimal bounds and extremal trajectories for time averages in dynamical systems Phys. Lett. A 382 382-6 · Zbl 1383.37001 · doi:10.1016/j.physleta.2017.12.023
[55] Waki H, Kim S, Kojima M and Muramatsu M 2006 Sums of squares and semidefinite program relaxations for polynomial optimization problems with structured sparsity SIAM J. Optim.17 218-42 · Zbl 1109.65058 · doi:10.1137/050623802
[56] Wittenberg R W 2002 Dissipativity, analyticity and viscous shocks in the (de) stabilized Kuramoto-Sivashinsky equation Phys. Lett. A 300 407-16 · Zbl 0997.35065 · doi:10.1016/S0375-9601(02)00861-7
[57] Wittenberg R W 2014 Optimal parameter-dependent bounds for Kuramoto-Sivashinsky-type equations Discrete Continuous Dyn. Syst.34 5325-57 · Zbl 1304.35156 · doi:10.3934/dcds.2014.34.5325
[58] Wittenberg R W and Holmes P 1999 Scale and space localization in the Kuramoto-Sivashinsky equation Chaos9 452-65 · doi:10.1063/1.166419
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.