×

Set-valued average value at risk and its computation. (English) Zbl 1269.91071

Summary: New versions of the set-valued average value at risk for multivariate risks are introduced by generalizing the well-known certainty equivalent representation to the set-valued case. The first ‘regulator’ version is independent from any market model whereas the second version, called the market extension, takes trading opportunities into account. Essential properties of both versions are proven and an algorithmic approach is provided which admits to compute the values of both versions over finite probability spaces. Several examples illustrate various features of the theoretical constructions.

MSC:

91G10 Portfolio theory
26E25 Set-valued functions
91B60 Trade models
90C39 Dynamic programming
91G30 Interest rates, asset pricing, etc. (stochastic models)

Software:

BENSOLVE

References:

[1] Acerbi, C., Tasche, D.: On the coherence of expected shortfall. Journal of Banking and Finance 26, 1487–1503 (2002) · doi:10.1016/S0378-4266(02)00283-2
[2] Artzner, P., Delbaen, F., Koch-Medina, P.: Risk measures and efficient use of capital. Astin Bull. 39(1), 101–116 (2009) · Zbl 1203.91110 · doi:10.2143/AST.39.1.2038058
[3] Benson, H.P.: An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem. J. Global Optim. 13(1), 1–24 (1998) · Zbl 0908.90223 · doi:10.1023/A:1008215702611
[4] Burgert, C., Rüschendorf, L.: Consistent risk measures for portfolio vectors. Insurance Math. Econom. 38(2), 289–297 (2006) · Zbl 1138.91490 · doi:10.1016/j.insmatheco.2005.08.008
[5] Ekeland, I., Galichon, A., Henry, M.: Comonotonic measures of multivariate risks. Mathematical Finance 22(1), 109–132 (2012) · Zbl 1278.91085 · doi:10.1111/j.1467-9965.2010.00453.x
[6] Ekeland, I., Schachermayer, W.: Law invariant risk measures in $$L\^\(\backslash\)infty (R_d)$$ . Statistics and Risk Modeling 28(3), 195–225 (2011) · Zbl 1232.91345 · doi:10.1524/stnd.2011.1099
[7] Föllmer, H., Schied, A.: Stochastic Finance, 3rd edn. Walter de Gruyter & Co., Berlin (2011) · Zbl 1126.91028
[8] Hamel, A., Heyde, F.: Duality for set-valued measures of risk. SIAM Journal on Financ. Mathematics 1, 66–95 (2010) · Zbl 1197.91112 · doi:10.1137/080743494
[9] Hamel, A., Heyde, F., Rudloff, B.: Set-valued risk measures for conical market models. Mathematics and Financial Economics 5, 1–28 (2011) · Zbl 1275.91077 · doi:10.1007/s11579-011-0047-0
[10] Hamel, A., Löhne, A., Rudloff, B.: A benson type algorithm for linear vector optimization and applications. Submitted for publication (2013) · Zbl 1330.90099
[11] Hodges, S., Neuberger, A.: Optimal replication of contingent claims under transaction costs. Rev. Futures Markets 8, 222–239 (1989)
[12] Jaschke, S., Küchler, U.: Coherent risk measures and good-deal bounds. Finance Stoch. 5(2), 181–200 (2001) · Zbl 0993.91023 · doi:10.1007/PL00013530
[13] Jouini, E., Meddeb, M., Touzi, N.: Vector-valued coherent risk measures. Finance and Stochastics 8, 531–552 (2004) · Zbl 1063.91048
[14] Kabanov, Y.M.: Hedging and liquidation under transaction costs in currency markets. Finance and Stochastics 3(2), 237–248 (1999) · Zbl 0926.60036 · doi:10.1007/s007800050061
[15] Kabanov, Y.M., Safarian, M.: Markets with Transaction Costs: Mathematical Theory. Springer, Springer Finance (2009) · Zbl 1186.91006
[16] Korn, R., Müller, S.: The decoupling approach to binomial pricing of multi-asset options. J. Comput. Finance 12(3), 1–30 (2009) · Zbl 1173.91367
[17] Löhne, A.: Vector Optimization with Infimum and Supremum. Springer, (2011) · Zbl 1230.90002
[18] Löhne, A., Rudloff, B.: An algorithm for calculating the set of superhedging portfolios in markets with transaction costs. ArXiv e-prints (2011). Submitted for publication · Zbl 1293.91177
[19] Löhne, A., Rudloff, B.: On solvency cones and their duals in markets with transaction costs. Working paper (2013)
[20] Pflug, G.C.: Some remarks on the value-at-risk and the conditional value-at-risk. In: Probabilistic constrained optimization, Nonconvex Optim. Appl., vol. 49, pp. 272–281. Kluwer Acad. Publ., Dordrecht (2000) · Zbl 0994.91031
[21] Rockafellar, R.T., Uryasev, S.P.: Optimization of conditional value-at-risk. Journal of risk 2, 21–42 (2000)
[22] Schachermayer, W.: The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time. Mathematical Finance 14(1), 19–48 (2004) · Zbl 1119.91046 · doi:10.1111/j.0960-1627.2004.00180.x
[23] Yankova, M.: Set-valued Average Value at Risk with random transaction costs (2011). Senior thesis, Princeton University
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.