×

Lower algebraic \(K\)-theory of certain reflection groups. (English) Zbl 1190.19001

Let \(P\) be a geodesic polyhedron in hyperbolic \(3\)-space \({\mathbb H}^3\), having the property that every pair of incident faces intersects at an angle \(\pi/m_{ij}\) (\(m_{ij} \geq 2\) an integer). Clearly then each of the faces of \(P\) can be extended to a hyperplane, so there can be obtained a naturally associated Coxeter group \(\Gamma_P\) generated by reflections in these hyperplanes, which may be viewed as a lattice in the isometry group \(O^+(3, 1)\) of \({\mathbb H}^3\), with fundamental domain this \(P\). In this paper the authors propose a general method for computing the lower algebraic \(K\)-theory of such a Coxeter group \(\Gamma_P\), namely \(Wh(\Gamma_P)\) for \(* = 1\), \(\widetilde{K}_0({\mathbb Z}\Gamma_P)\) for \(* = 0\) and \(K_*({\mathbb Z}\Gamma_P)\) for \(* < 0\) (practically it suffices to consider only the case \(* = -1\) since \(K_*({\mathbb Z}\Gamma_P)=0\) for \(* < -1\) which is already known).
This is done by trying to extend the method developed in a recent work [J.-F. Lafont and I. J. Ortiz, Comment. Math. Helv. 84, No. 2, 297–337 (2009; Zbl 1172.19001)] of the first and third authors to any such \(P\), in which there are given explicit computations for such \(K\)-theory of all the 32 hyperbolic \(3\)-simplices in \({\mathbb H}^3\). Indeed the key to the authors’ approach is observing the splitting formula \[ K_*({\mathbb Z}\Gamma_P)\cong H_*^{\Gamma_P}(E_{\mathcal FIN}(\Gamma_P); {\mathbb K}{\mathbb Z}^{-\infty})\oplus\bigoplus_V H_*^{V}(E_{\mathcal FIN}(V)\to *) \] established in the quoted work above. Here the group in the first term denotes a specific equivariant homology of \(E_{\mathcal FIN}(\Gamma_P)\), a model for the classifying space for proper actions, and those in the second term denote cokernels of certain (assembly) maps associated to virtually cyclic subgroups \(V\) with specific geometric properties. By virtue of this splitting formula the computation of \(K_*({\mathbb Z}\Gamma_P)\) can be assigned to examine these two terms on the right hand side. The first term is discussed in Sections 3 and 4, in which a spectral sequence that allows one to compute this homology group is analyzed, and the second term is discussed in Section 5. The results obtained from these analyses of the two terms lead to the conclusion that the \(K_*({\mathbb Z}\Gamma_P)\) for \(* \leq 1\) can be directly determined from the geometry of \(P\). In the last section (Section 6) there are given two types of examples of computation, which is useful to help one understand the procedure for computing the lower algebraic \(K\)-theory of \(\Gamma_P\) based on the method presented here.

MSC:

19A31 \(K_0\) of group rings and orders
18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)
51M10 Hyperbolic and elliptic geometries (general) and generalizations
51M20 Polyhedra and polytopes; regular figures, division of spaces
20F55 Reflection and Coxeter groups (group-theoretic aspects)
19D35 Negative \(K\)-theory, NK and Nil
19B28 \(K_1\) of group rings and orders

Citations:

Zbl 1172.19001

References:

[1] DOI: 10.1007/BF01389410 · Zbl 0533.57008 · doi:10.1007/BF01389410
[2] Reiner, London Math. Soc. Monogra. N. S. pp xiv+395– (2003)
[3] Curtis, Methods of Representation Theory, Vol. II pp xviii+951– (1987) · Zbl 0659.20036
[4] Curtis, Methods of Representation Theory, Vol. I pp xxiv+819– (1990)
[5] DOI: 10.1007/s10977-004-1484-9 · Zbl 1068.19004 · doi:10.1007/s10977-004-1484-9
[6] DOI: 10.1080/00927878008822554 · Zbl 0448.16017 · doi:10.1080/00927878008822554
[7] Oliver, Mem. Amer. Math. Soc. 76 pp vi+97– (1988)
[8] DOI: 10.1007/11792086_6 · doi:10.1007/11792086_6
[9] DOI: 10.1017/CBO9780511600654 · doi:10.1017/CBO9780511600654
[10] DOI: 10.1090/S0002-9947-00-02529-0 · Zbl 0954.19001 · doi:10.1090/S0002-9947-00-02529-0
[11] DOI: 10.1090/S0002-9904-1966-11484-2 · Zbl 0147.23104 · doi:10.1090/S0002-9904-1966-11484-2
[12] Bass, Algebraic K-theory (1968)
[13] DOI: 10.1112/jlms/s2-21.1.176 · Zbl 0418.16015 · doi:10.1112/jlms/s2-21.1.176
[14] DOI: 10.1016/0040-9383(66)90036-X · Zbl 0166.02401 · doi:10.1016/0040-9383(66)90036-X
[15] DOI: 10.1016/0021-8693(78)90114-X · Zbl 0376.16026 · doi:10.1016/0021-8693(78)90114-X
[16] DOI: 10.1070/SM1970v012n02ABEH000920 · Zbl 0252.52005 · doi:10.1070/SM1970v012n02ABEH000920
[17] Lück, The Baum-Connes and the Farrell-Jones conjectures in K- and L-theory pp 703– (2005)
[18] DOI: 10.1007/3-7643-7447-0_7 · doi:10.1007/3-7643-7447-0_7
[19] DOI: 10.2307/2007347 · Zbl 0505.12010 · doi:10.2307/2007347
[20] Lemmermeyer, Acta Arith. 84 pp 59– (1998)
[21] DOI: 10.1515/FORUM.2008.022 · Zbl 1147.19005 · doi:10.1515/FORUM.2008.022
[22] DOI: 10.4171/CMH/163 · Zbl 1172.19001 · doi:10.4171/CMH/163
[23] DOI: 10.1016/j.top.2007.03.001 · Zbl 1132.19001 · doi:10.1016/j.top.2007.03.001
[24] Ziegler, Lectures on polytopes pp ix+370– (1995) · Zbl 0823.52002 · doi:10.1007/978-1-4613-8431-1
[25] Keating, Mathematika 21 pp 90– (1974)
[26] DOI: 10.4171/CMH/164 · Zbl 1167.19003 · doi:10.4171/CMH/164
[27] DOI: 10.1007/BF01238563 · Zbl 0953.20041 · doi:10.1007/BF01238563
[28] DOI: 10.2307/2371086 · Zbl 0003.32804 · doi:10.2307/2371086
[29] DOI: 10.1007/BF02391907 · Zbl 0167.04503 · doi:10.1007/BF02391907
[30] DOI: 10.2307/1971165 · Zbl 0397.18012 · doi:10.2307/1971165
[31] DOI: 10.1112/plms/s3-29.4.593 · Zbl 0302.16013 · doi:10.1112/plms/s3-29.4.593
[32] Galovich, Mathematika 19 pp 105– (1972)
[33] Fröhlich, Mathematika 21 pp 64– (1974)
[34] DOI: 10.2307/2006167 · Zbl 0377.10002 · doi:10.2307/2006167
[35] DOI: 10.1007/BF00965457 · Zbl 0829.19002 · doi:10.1007/BF00965457
[36] DOI: 10.1016/0021-8693(78)90165-5 · Zbl 0377.20006 · doi:10.1016/0021-8693(78)90165-5
[37] DOI: 10.2307/2152801 · Zbl 0798.57018 · doi:10.2307/2152801
[38] DOI: 10.1016/0021-8693(80)90090-3 · Zbl 0436.16006 · doi:10.1016/0021-8693(80)90090-3
[39] Endó, Osaka J. Math. 13 pp 109– (1976)
[40] Serre, Trees (1980) · Zbl 0548.20018 · doi:10.1007/978-3-642-61856-7
[41] DOI: 10.1080/00927878208822738 · Zbl 0491.20032 · doi:10.1080/00927878208822738
[42] Serre, Local fields pp viii+241– (1979) · doi:10.1007/978-1-4757-5673-9
[43] Davis, The Geometry and Topology of Coxeter Groups pp xiv+584– (2008) · Zbl 1142.20020
[44] Roeder, Ann. l’Inst. Fourier 57 pp 825– (2007) · Zbl 1127.51012 · doi:10.5802/aif.2279
[45] DOI: 10.1016/0021-8693(74)90072-6 · Zbl 0286.12009 · doi:10.1016/0021-8693(74)90072-6
[46] Reiner, Symposia Mathematica pp 501– (1974)
[47] Ratcliffe, Foundations of hyperbolic manifolds (1994) · Zbl 0809.51001 · doi:10.1007/978-1-4757-4013-4
[48] DOI: 10.1023/A:1007796610206 · Zbl 0907.19001 · doi:10.1023/A:1007796610206
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.