×

Surgery obstructions on closed manifolds and the inertia subgroup. (English) Zbl 1263.57027

Let \(\pi\) be a finitely presented group, and \({\omega}: {\pi}\to {\mathbb Z}/2\) be an orientation character. Given a closed topological \(n\)-manifold \(X\), \(n\geq 5\), with the fundamental group \(\pi\) and orientation character \(\omega\), let \(C_n(X,{\omega})\) denote the subgroup of the Wall surgery obstruction group \(L_n({\mathbb Z}{\pi},{\omega})\) which is the image of the map \({\sigma}_n(X): [X,G/TOP]\to L_n({\mathbb Z}{\pi},{\omega})\) in the surgery exact sequence. In other words, \(C_n(X, {\omega})\) is given by the surgery obstructions of all degree \(1\) normal maps \((f,b): M\to X\) for closed \(n\)-manifolds \(M\). The closed manifold subgroup \(C_n({\pi}, {\omega})\) is defined as the subgroup of \(L_n({\mathbb Z}{\pi},{\omega})\) generated by all of the closed manifold subgroups \(C_n(X,{\omega})\).
Similarly, for a fixed \((X,{\omega})\), let \(I_{n+1}(X, {\omega})\) denote the image of the map \({\sigma}_{n+1}(X)\) in the surgery exact sequence, \({\sigma}_{n+1}(X): [{\Sigma}(X),G/TOP]\to L_{n+1}({\mathbb Z}{\pi}, {\omega})\). The elements of \(I_{n+1}(X, {\omega})\) may be interpreted as surgery obstructions of relative degree \(1\) normal maps \((f,b): (W,\partial W)\to (X\times I, X\times \partial I)\) where restricts to a homeomorphism on the boundary \(\partial W\). The inertia subgroup \(I_{n+1}({\pi}, {\omega})\subset L_{n+1}({\mathbb Z}{\pi}, {\omega})\) is generated by all of the subgroups \(I_{n+1}(X, {\omega})\) for various choices of \(X\) with the orientation character \(\omega\).
The main result of the paper is that the inertia subgroup \(I_{n+1}({\pi}, {\omega})\) equals the closed manifold subgroup \(C_{m+1}({\pi}, {\omega})\) for all \(n\geq 5\). This result holds for the simple surgery obstructions in \(L^s_{n+1}({\mathbb Z}{\pi}, {\omega})\), as well as for the \(L^h\) and \(L^p\) versions. It was previously shown by the author in [Lect. Notes Math. 967, 101–131 (1982; Zbl 0503.57018)] that the images of these two subgroups are equal in the projective surgery obstruction groups \(L^p_{n+1}({\mathbb Z}{\pi}, {\omega})\) for finite groups \(\pi\). The main result stated above answers the question posed in this reference in 1980.

MSC:

57R67 Surgery obstructions, Wall groups
57R75 \(\mathrm{O}\)- and \(\mathrm{SO}\)-cobordism

Citations:

Zbl 0503.57018

References:

[1] DOI: 10.1017/S0305004100035064 · doi:10.1017/S0305004100035064
[2] DOI: 10.1016/0022-4049(80)90040-7 · Zbl 0419.20026 · doi:10.1016/0022-4049(80)90040-7
[3] DOI: 10.1016/0040-9383(66)90015-2 · Zbl 0168.44001 · doi:10.1016/0040-9383(66)90015-2
[4] Conner P. E., Publ. Math. 37 pp 117– (1969)
[5] Ga. pp 472– (1969)
[6] DOI: 10.2307/2152801 · Zbl 0798.57018 · doi:10.2307/2152801
[7] Hambleton I., Part pp 101– (1980)
[8] Hambleton I., Aarhus 1982 pp 222– (1982)
[9] DOI: 10.1112/plms/s3-56.2.349 · Zbl 0665.57026 · doi:10.1112/plms/s3-56.2.349
[10] DOI: 10.2307/120991 · doi:10.2307/120991
[11] DOI: 10.1017/S0305004100049616 · doi:10.1017/S0305004100049616
[12] DOI: 10.1016/0040-9383(73)90027-X · Zbl 0271.55006 · doi:10.1016/0040-9383(73)90027-X
[13] DOI: 10.1016/0040-9383(76)90040-9 · Zbl 0355.55004 · doi:10.1016/0040-9383(76)90040-9
[14] DOI: 10.2996/kmj/1138037264 · Zbl 0619.57017 · doi:10.2996/kmj/1138037264
[15] DOI: 10.1017/S0305004100053482 · Zbl 0357.55015 · doi:10.1017/S0305004100053482
[16] DOI: 10.2307/1971060 · Zbl 0295.57008 · doi:10.2307/1971060
[17] Nicas A. J., Mem. Amer. Math. Soc. 39 pp 108– (1982)
[18] DOI: 10.1016/0001-8708(71)90041-7 · Zbl 0214.50502 · doi:10.1016/0001-8708(71)90041-7
[19] Quinn F., Ga. pp 500– (1969)
[20] Ranicki A. A., Berlin pp 275– (1979)
[21] DOI: 10.2307/1970239 · Zbl 0099.39202 · doi:10.2307/1970239
[22] DOI: 10.2307/2373397 · Zbl 0218.55023 · doi:10.2307/2373397
[23] Taylor L. R., Ont. pp 170– (1978)
[24] DOI: 10.1007/BF02566923 · Zbl 0057.15502 · doi:10.1007/BF02566923
[25] DOI: 10.1007/BF01389748 · Zbl 0278.16018 · doi:10.1007/BF01389748
[26] Topology 25 pp 189– (1976)
[27] DOI: 10.1007/BF02566110 · Zbl 0256.55007 · doi:10.1007/BF02566110
[28] DOI: 10.2307/2373662 · Zbl 0303.55003 · doi:10.2307/2373662
[29] Yosimura Z., Osaka J. Math. 12 pp 305– (1975)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.