×

Two examples of vanishing and squeezing in \(K_1\). (English) Zbl 1454.19001

Summary: Controlled topology is one of the main tools for proving the isomorphism conjecture concerning the algebraic \(K\)-theory of group rings. In this article we dive into this machinery in two examples: when the group is infinite cyclic and when it is the infinite dihedral group in both cases with the family of finite subgroups. We prove a vanishing theorem and show how to explicitly squeeze the generators of these groups in \(K_1\). For the infinite cyclic group, when taking coefficients in a regular ring, we get a squeezing result for every element of \(K_1\); this follows from the well-known result of H. Bass et al. [Publ. Math., Inst. Hautes Étud. Sci. 22, 545–564 (1964; Zbl 0248.18026)].

MSC:

19B28 \(K_1\) of group rings and orders
18F25 Algebraic \(K\)-theory and \(L\)-theory (category-theoretic aspects)

Citations:

Zbl 0248.18026

References:

[1] Bartels, Arthur C.On proofs of the Farrell-Jones conjecture.Topology and Geometric Group Theory, 1-31. Springer Proc. Math. Stat., 184,Springer, [Cham], 2016.MR3598160,arXiv:1210.1044, doi:10.1007/978-3-319-43674-6 1.608,609 · Zbl 1434.19002
[2] Bartels, Arthur C.Squeezing and higher algebraic K-theory.K-theory28 (2003), no. 1, 19-37.MR1988817,Zbl 1036.19002, doi:10.1023/A:1024166521174. 608 · Zbl 1036.19002
[3] Bartels, Arthur C.; Bestvina, Mladen.The Farrell-Jones conjecture for mapping class groups.Invent. Math.215(2019), no. 2, 651-712.MR3910072,Zbl 07023770,arXiv:1606.02844, doi:10.1007/s00222-018-0834-9.608 · Zbl 1454.20084
[4] Bartels, Arthur C.;Farrell, F. Thomas;Jones, Lowell E.;Reich, Holger.On the isomorphism conjecture in algebraicK-theory.Topology 43(2004), no. 1, 157-213.MR2030590,Zbl 1036.19003,arXiv:math/0108139, doi:10.1016/S0040-9383(03)00032-6.608,610,613,614,616 · Zbl 1036.19003
[5] Bartels Arthur C.; L¨uck, Wolfgang.The Borel Conjecture for hyperbolic and CAT(0)-groups.Ann. of Math. (2)175(2012), no. 2, 631-689.MR2993750, Zbl 1256.57021,arXiv:0901.0442, doi:10.4007/annals.2012.175.2.5.608 · Zbl 1256.57021
[6] Bartels, Arthur C.; L¨uck, Wolfgang; Reich, Holger.TheK-theoretic Farrell-Jones conjecture for hyperbolic groups.Invent. Math.172(2008), no. 1, 29-70.MR2385666,Zbl 1143.19003,arXiv:math/0701434, doi:10.1007/s00222007-0093-7.608,616 · Zbl 1143.19003
[7] Bass, Hyman; Heller, Alex; Swan, Richard G.The Whitehead group of a polynomial extension.Inst. Hautes ´Etudes Sci. Publ. Math.No. 22 (1964) 61-79. MR0174605,Zbl 0248.18026, doi:10.1007/BF02684690.609,610,631,633 · Zbl 0248.18026
[8] Davis, James F.; Khan, Qayum; Ranicki, Andrew A.AlgebraicK-theory over the infinite dihedral group: an algebraic approach.Algebr. Geom. Topol. 11(2011), no. 4, 2391-2436.MR2835234,Zbl 1236.19002,arXiv:0803.1639, doi:10.2140/agt.2011.11.2391.610,617,621 · Zbl 1236.19002
[9] Davis, James F.; L¨uck, Wolfgang.Spaces over a category and assembly maps in isomorphism conjectures inK- andL- theory.K-theory15(1998), no. 3, 201- 252.MR1659969,Zbl 0921.19003, doi:10.1023/A:1007784106877.608,616,617, 618
[10] Davis,James F.;Quinn,Frank;Reich,Holger.AlgebraicK-theory over the infinite dihedral group:a controlled topology approach.J. Topol. 4(2011), no. 3, 505-528.MR2832565,Zbl 1227.19004,arXiv:1002.3702v2, doi:10.1112/jtopol/jtr009.621 · Zbl 1227.19004
[11] Farrell, F. Thomas; Jones, Lowell E.Isomorphism conjectures in algebraicK-theory.J. Amer. Math. Soc.6(1993), no. 2, 249-297.MR1179537,Zbl 0798.57018, doi:10.2307/2152801.608 · Zbl 0798.57018
[12] L¨uck, Wolfgang.Isomorphism conjectures inK- andL-theory. Monograph in progress, (2019).www.him.uni-bonn.de/lueck/data/ic.pdf.619
[13] L¨uck, Wolfgang; Reich, Holger.The Baum-Connes and the Farrell-Jones conjectures inK- andL-theory. Handbook ofK-theory. 1, 2. pp. 703-842.Springer, Berlin, 2005.MR2181833,Zbl 1120.19001,arXiv:math/0402405, doi:10.1007/9783-540-27855-9 15.621
[14] Pedersen, Erik K.Controlled algebraicK-theory, a survey.Geometry and topology:(Aarhus, 1998), 351-368. Contemp. Math., 258,Amer. Math. Soc., Providence, RI, 2000.MR1778117,Zbl 0976.57001, doi:10.1090/conm/258/1778117. 608,609,626 · Zbl 0976.57001
[15] Reich, Holger; Varisco, Marco.AlgebraicK-theory, assembly maps, controlled algebra and trace methods.Space-Time-Matter, 1-50,De Gruyter, Berlin, 2018.MR3792301,Zbl 1409.19001,arXiv:1702.02218, doi:10.1515/9783110452150001.608 · Zbl 1409.19001
[16] Wegner, Christian.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.