×

\(LT\)-equivariant index from the viewpoint of \(KK\)-theory. A global analysis on the infinite-dimensional Heisenberg group. (English) Zbl 1445.19004

Following up [J. Noncommut. Geom. 13, No. 2, 553–586 (2019; Zbl 1429.58019)], this paper continues the author’s research project about index theory on infinite dimensional manifolds using the methods of noncommutative geometry. Here the goal is to develop an infinite-dimensional version of Kasparov’s index theory for complete Riemannian manifolds equipped with proper cocompact group actions (cf. [Sov. Math., Dokl. 27, 105–109 (1983; Zbl 0526.22007); translation from Dokl. Akad. Nauk SSSR 268, 533–537 (1983); Invent. Math. 91, No. 1, 147–201 (1988; Zbl 0647.46053); J. Noncommut. Geom. 10, No. 4, 1303–1378 (2016; Zbl 1358.19001)]).
More specifically, the infinite dimensional manifolds \(\mathcal{M}\) considered in this project carry proper actions of the loop group \(LT\mathrel{{:}{=}}C^\infty(S^1,T)\) of a circle group \(T\) and are assumed to be “even-dimensional and \(\mathrm{Spin}^c\)” in a certain sense. The index theory of interest is the one of the Dirac operator on \(\mathcal{L}\otimes\mathcal{S}\), where \(\mathcal{S}\to\mathcal{M}\) denotes the spinor bundle and \(\mathcal{L}\to\mathcal{M}\) an \(LT\)-equivariant line bundle which is \(\tau\)-twisted with respect to some \(U(1)\)-central extension \(LT^\tau\) of \(LT\).
At the core of the index theory should be a “function \(C^*\)-algebra” \(C_0(\mathcal{M})\), but as infinite dimensional manifolds are not locally compact Hausdorff spaces, the Gelfand–Naimark-duality dictates that it cannot be a commutative one. The question of how to define a non-commutative \(C^*\)-algebra as a replacement is left open in this paper. Instead, the author gives ad-hoc definitions of several objects which would normally be derived from this function algebra:
The author’s previous work [J. Noncommut. Geom. 13, No. 2, 553–586 (2019; Zbl 1429.58019)] already features the definition of a Hilbert space \(\underline{L^2(\mathcal{M},\mathcal{L}\otimes\mathcal{S})}\), a “Dirac operator” \(\mathcal{D}\) on this Hilbert space and a \(C^*\)-algebra \(\underline{LT\mathbin{{\rtimes}_\tau}\mathbb{C}}\), where the underline always tags substituting objects for the corresponding non-existing objects without underline. The “index element” \(\underline{\underline{[\mathcal{D}]}}\mathrel{{:}{=}}(\underline{L^2(\mathcal{M},\mathcal{L}\otimes\mathcal{S})},\mathcal{D})\) should be interpreted as some kind of Kasparov module over the yet-to-be-discovered function \(C^*\)-algebra \(C_0(\mathcal{M})\).
This paper continues by providing the construction of the “analytic index” \(\underline{\mathrm{ind}_{LT\mathbin{{\rtimes}_\tau}\mathbb{C}}(\mathcal{D})}\) as a Kasparov module over \((\mathbb{C},\underline{LT\mathbin{{\rtimes}_\tau}\mathbb{C}})\), a \(C^*\)-algebra \(\underline{LT\rtimes C_0(\mathcal{M})}\), a Kasparov module \(\underline{j_\tau^{LT}([\mathcal{D}])}\) over \((\underline{LT\rtimes C_0(\mathcal{M})},\underline{LT\mathbin{{\rtimes}_\tau}\mathbb{C}}))\) which plays the role of the image of \(\underline{\underline{[D]}}\) under a “partial descent homomorphism”, and a Kasparov module \(\underline{[c_{\mathcal{M}}]}\) over \((\mathbb{C},\underline{LT\rtimes C_0(\mathcal{M})})\) playing the role of the Mischenko line bundle for the action of \(LT\) on \(\mathcal{M}\). Now, the index theorem of this paper is the equality in \(KK(\mathbb{C},\underline{LT\mathbin{{\rtimes}_\tau}\mathbb{C}})\) between the “image of the assembly map at the index element” \(\underline{\mu_\tau^{LT}([\mathcal{D}])}\mathrel{{:}{=}}\underline{[c_{\mathcal{M}}]}\otimes\underline{j_\tau^{LT}([\mathcal{D}])}\) and the analytic index \(\underline{\mathrm{ind}_{LT\mathbin{{\rtimes}_\tau}\mathbb{C}}(\mathcal{D})}\).

MSC:

19K56 Index theory
58B34 Noncommutative geometry (à la Connes)
58J22 Exotic index theories on manifolds
22E67 Loop groups and related constructions, group-theoretic treatment
19K35 Kasparov theory (\(KK\)-theory)
Full Text: DOI

References:

[1] Alekseev, A.; Malkin, A.; Meinrenken, E., Lie group valued moment maps, J. Differential Geom., 48, 3, 445-495 (1998) · Zbl 0948.53045
[2] Arai, A., Hilbert Spaces and Quantum Mechanics (Japanese) (1997), Kyoritsu Shuppan
[3] Atiyah, M.; Segal, G., The index of elliptic operators: II, Ann. of Math. (2), 87, 531-545 (1968) · Zbl 0164.24201
[4] Atiyah, M.; Singer, I., The index of elliptic operators: I, Ann. of Math. (2), 87, 484-530 (1968) · Zbl 0164.24001
[5] Atiyah, M.; Singer, I., The index of elliptic operators: III, Ann. of Math. (2), 87, 546-604 (1968) · Zbl 0164.24301
[6] Baaj, S.; Julg, P., Théorie bivariante de Kasparov et opérateurs non-bornés dans les \(C^\ast \)-modules hilbertiens, C. R. Acad. Sci., Paris I, 296, 21, 875-878 (1983) · Zbl 0551.46041
[7] Blackader, B., \(K\)-Theory for operator algebras, (Mathematical Sciences Research Institute Publications, vol. 5 (1998), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0913.46054
[8] Connes, A., Non-commutative differential geometry, Publ. Math. Inst. Hautes Études Sci., 62, 257-360 (1985) · Zbl 0564.58002
[9] Connes, A., Noncommutative Geometry (1994), Academic Press, Inc.: Academic Press, Inc. San Diego, CA · Zbl 1106.58004
[10] Dumitrascu, D.; Trout, J., On \(C^\ast \)-algebras and \(K\)-theory for infinite-dimensional Fredholm manifolds, Topol. Appl., 153, 14, 2528-2550 (2006) · Zbl 1106.19003
[11] Freed, D.; Hopkins, M. J.; Teleman, C., Loop groups and twisted K-theory II, J. Amer. Math. Soc., 26, 3, 595-644 (2013) · Zbl 1273.22015
[12] S. Gong, J. Wu, G. Yu, The Novikov conjecture, the group of volume preserving diffeomorphisms and Hilbert-Hadamard spaces, preprint, arXiv:1811.02086. · Zbl 1468.19009
[13] Higson, N.; Kasparov, G., \(E\)-Theory and \(K K\)-theory for groups which act properly and isometrically on Hilbert space, Invent. Math., 144, 1, 23-74 (2001) · Zbl 0988.19003
[14] Higson, N.; Kasparov, G.; Trout, J., A bott periodicity theorem for infinite-dimensional Euclidean space, Adv. Math., 135, 1, 1-40 (1998) · Zbl 0911.46040
[15] Jaffe, A.; Lesniewski, A.; Osterwalder, K., Quantum \(K\)-theory I. The Chern character, Comm. Math. Phys., 118, 1, 1-14 (1988) · Zbl 0656.58048
[16] Jaffe, A.; Lesniewski, A.; Weitsman, J., Index of a Family of Dirac operators on loop spaces, Comm. Math. Phys., 112, 1, 75-88 (1987) · Zbl 0629.58040
[17] Jensen, K.; Thomsen, K., Elements of \(K K\)-theory, (Mathematics: Theory and Applications (1991), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA) · Zbl 1155.19300
[18] Kac, V.; Todorov, I., Superconformal current algebras and their unitary representations, Comm. Math. Phys., 102, 2, 337-347 (1985) · Zbl 0599.17011
[19] Kasparov, G., An index for invariant elliptic operators, \(K\)-theory, and representations of Lie groups, Sov. Math. Dokl., 27, 1, 105-109 (1983) · Zbl 0526.22007
[20] Kasparov, G., Equivariant \(K K\)-theory and the Novikov conjecture, Invent. Math., 91, 1, 147-201 (1988) · Zbl 0647.46053
[21] Kasparov, G., Elliptic and transversally elliptic index theory from the viewpoint of \(K K\)- theory, J. Noncommut. Geom., 10, 4, 1303-1378 (2016) · Zbl 1358.19001
[22] Kazama, Y.; Suzuki, H., Characterization of \(N = 2\) superconformal models generated by the coset space method, Phys. Lett. B, 216, 1-2, 112-116 (1989)
[23] Kirillov, A. A., Lectures on the orbit methods, (Graduate Studies in Mathematics, vol. 64 (2004), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 1229.22003
[24] Kucerovsky, D., The \(K K\)-products of unbounded modules, K-Theory, 11, 1, 17-34 (1997) · Zbl 0871.19004
[25] Landweber, G., Dirac Operators on Loop Spaces, 56 (1999), Harvard University, Thesis (Ph.D.)
[26] Landweber, G., Multiplets of representations and Kostant’s Dirac operator for equal rank loop groups, Duke Math. J., 110, 1, 121-160 (2001) · Zbl 1018.17016
[27] Y. Loizides, E. Meinrenken, Y. Song, Spinor modules for Hamiltonian loop group spaces, preprint, arXiv:1706.07493. · Zbl 1456.58005
[28] McDuff, D., The moment map for circle actions on symplectic manifolds, J. Geom. Phys., 5, 2, 149-160 (1988) · Zbl 0696.53023
[29] Meinrenken, E., Twisted \(K\)-homology and group-valued moment maps, Int. Math. Res. Not. IMRN, 20, 4563-4618 (2012) · Zbl 1260.53143
[30] Murphy, G., \( C^\ast \)-Algebras and Operator Theory (1990), Academic Press, Inc.: Academic Press, Inc. Boston, MA · Zbl 0714.46041
[31] Pier, J. P., Amenable locally compact groups, (A Wiley-Interscience Publication (1984), John Wiley and Sons, Inc.: John Wiley and Sons, Inc. New York) · Zbl 0597.43001
[32] Pressery, A.; Segal, G., Loop groups, (Oxford Science Publications (1986), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press New York) · Zbl 0618.22011
[33] Song, Y., Dirac operators on quasi-Hamiltonian \(G\)-spaces, J. Geom. Phys., 106, 70-86 (2016) · Zbl 1357.53104
[34] D. Takata, An infinite-dimensional index theorem and the Higson-Kasparov-Trout algebra, preprint, arXiv:1811.06811.
[35] D. Takata, A Loop Group Equivariant Analytic Index Theory for Infinitedimensional Manifolds (Ph.D. thesis) available as: https://repository.kulib.kyoto-u.ac.jp/dspace/bitstream/2433/232217/2/drigk04334.pdf.
[36] Takata, D., An analytic \(L T\)-equivariant index and noncommutative geometry, J. Noncommut. Geom., 13, 2, 553-586 (2019) · Zbl 1429.58019
[37] A. Wasserman, Kac-Moody and Virasoro algebras, lecture notes, available as arXiv:1004.1287.
[38] Williams, D., Crossed products of \(C^\ast \)-algebras, (Mathematical Surveys and Monographs, vol. 134 (2007), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 1119.46002
[39] Witten, E., The index of the Dirac operator in loop space, (Elliptic Curves and Modular Forms in Algebraic Topology (Princeton, NJ, 1986) 161-181. Elliptic Curves and Modular Forms in Algebraic Topology (Princeton, NJ, 1986) 161-181, Lecture Notes in Math., vol. 1326 (1988), Springer: Springer Berlin) · Zbl 0679.58045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.