×

A complete axiomatisation for the logic of lattice effect algebras. (English) Zbl 1523.03030

Summary: In a recent work D. J. Foulis and S. Pulmannová [Stud. Log. 100, No. 6, 1291–1315 (2012; Zbl 1273.03173)] studied the logical connectives in lattice effect algebras. In this paper we extend their study and investigate further the logical calculus for which the lattice effect algebras can serve as semantic models. We shall first focus on some properties of lattice effect algebras and will then give a complete axiomatisation of this logic.

MSC:

03G12 Quantum logic
81P10 Logical foundations of quantum mechanics; quantum logic (quantum-theoretic aspects)
06C15 Complemented lattices, orthocomplemented lattices and posets

Citations:

Zbl 1273.03173

References:

[1] Bennett, MK; Foulis, DJ, Phi-symmetric effect algebras, Found. Phys., 25, 12, 1699-1722 (1995) · doi:10.1007/BF02057883
[2] Borzooei, R.A., Dvurečenskij, A., Sharafi, A.H.: Material implications in lattice effect algebras. Inform. Sci., pp. 233-240 (2018) · Zbl 1437.06009
[3] Busch, P.; Lahti, PJ; Mittelstaedt, P., The quantum theory of measurement (1991), Berlin: Springer, Berlin · doi:10.1007/978-3-662-13844-1
[4] Chajda, I., Länger, H., Paseka, J.: The Groupoid-Based logic for lattice effect algebras. ISMVL, pp. 230-235 (2017)
[5] Dalla Chiara, ML; Giuntini, R.; Greechie, R., Reasoning in quantum theory: sharp and unsharp quantum logics (2004), Netherlands: Springer, Netherlands · Zbl 1059.81003 · doi:10.1007/978-94-017-0526-4
[6] Davies, EB, Quantum theory of open systems (1975), New York: Academic, New York
[7] Dvurečenskij, A., Pulmannová, S.: New trends in quantum structures springer Netherlands (2000) · Zbl 0987.81005
[8] Foulis, DJ; Bennett, MK, Effect algebras and unsharp quantum logics, Foundations of Physics, 24, 10, 1331-1352 (1994) · Zbl 1213.06004 · doi:10.1007/BF02283036
[9] Foulis, DJ; Pulmannová, S., Logical connectives on lattice effect algebras, Stud. Logica., 100, 6, 1291-1315 (2012) · Zbl 1273.03173 · doi:10.1007/s11225-012-9454-3
[10] Greechie, RJ; Foulis, D.; Pulmannová, S., The center of an effect algebra, Order, 12, 1, 91-106 (1994) · Zbl 0846.03031 · doi:10.1007/BF01108592
[11] Gudder, SP, Total extensions of effect algebras, Found. Phys. Lett., 8, 8, 243-252 (1995) · doi:10.1007/BF02187348
[12] Gudder, SP, Sharply dominating effect algebras, Tatra Mountains Mathematical, 15, 15-23 (1998) · Zbl 0939.03073
[13] Jenča, G., The block structure of complete lattice ordered effect algebras, J. Aust. Math. Soc., 83, 2, 181-216 (2007) · Zbl 1142.03035 · doi:10.1017/S1446788700036867
[14] Jenča, G.; Riečanová, Z., On sharp elements in lattice ordered effect algebras, BUSEFAL, 25, 80, 24-29 (1999)
[15] Kraus, K., States, effects and operations, vol. 190 of Lecture Notes in Physics (1983), Berlin: Springer, Berlin · Zbl 0545.46049
[16] Ludwig, G., Foundations of quantum mechanics, vol. 1 (1983), Berlin: Springer, Berlin · Zbl 0509.46057 · doi:10.1007/978-3-642-86751-4
[17] Pavičić, M., A new axiomatization of unified quantum logic, Int. J. Theor. Phys., 31, 9, 1753-1766 (1992) · Zbl 0786.03046 · doi:10.1007/BF00671784
[18] Riečanová, Z., Generalization of blocks for d-lattices and lattice-ordered effect algebras, Int. J. Theor. Phys., 39, 2, 231-237 (2000) · Zbl 0968.81003 · doi:10.1023/A:1003619806024
[19] Riečanová, Z., Pseudocomplemented lattice effect algebras and existence of states, Inf. Sci., 179, 5, 529-534 (2009) · Zbl 1166.03038 · doi:10.1016/j.ins.2008.07.019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.